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ABSTRACT 

Modeling and simulation are together widely used throughout the Army, 
and vast amounts of computer time are used in running them. Of even more 
concern, however, is the quantity of analyst time involved in setting up and 
analyzing the results of the runs. Contributions that enhance the use of analyst 
time are therefore particularly welcomed. One aspect of efficient use is the 
confidence that users have in the ability of the simulation to represent the real 
world. To this end, an ongoing model validation effort was supported by 
developing and providing computer routines to calculate metrics that measure 
the degree to which simulation data match test data. Tests of random number 
generators were also developed and applied to CECOM models. Many 
techniques for speeding up simulation models rely on approximations that are 
adequate for the intended use of the models. In the case of engineering 
simulations, however, it is often desirable to maintain very high fidelity, even 
though it be superfluous for the current use, because future uses of the model 
may require it. For simulations that model random effects, a technique was 
found that is generally applicable, is easily implemented, does not compromise 
fidelity, and provides significant savings for making comparative studies with 
simulation models. Synchronization of the random number strings allows each 
entity modeled to have its own set of random draws for any combination of 
input parameters. If synchronization is in place, then statistical experiment 
design can also be used to provide information on the sensitivity of the output 
to input parameters. The report concludes with recommendations and an 
implementation plan. 
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0. EXECUTIVE SUMMARY 

Criticality of Modeling and Simulation Effort 

Modeling and simulation are together a critical technology to the Army. Thousands of 
models have been written that are used for many purposes throughout almost all Army 
organizations. 

Simulations are of many types. They are used to predict the effectiveness of weapon 
systems of the future as well as those in the field. They provide operational support in mission 
planning. The class of Distributed Interactive Simulations is used to mount war games that may 
involve many players simultaneously. 

Of primary concern in this study is the class of engineering simulations as applied to 
digital communications systems. Such communication systems may be quite extensive and tend 
to contain a great many copies of elements that are essentially the same, such as radio sets. As 
engineering simulations, they are intended to contain faithful replicas of the physical aspects of 
the system. They often are built early in system design and are maintained to follow the changes 
made to the system as it is developed and fielded. 

Since simulations run on computers, it would seem that minimizing computer time would 
be critical in reducing the vast total expense of the overall Army modeling and simulation effort. 
While this was true in the days of large centralized main-frame computers, it is relatively less 
important now that simulations are typically run on work stations under the control of the 
simulation user. Now the critical cost element is the analyst time involved in developing the 
simulation model, running it, verifying that the run was properly made, analyzing the output, and 
drawing conclusions.  Computer time is generally only a marginal contributor. 

Rather than considering the cost of an individual simulation run, it is more important to 
view it in the overall context of an analysis effort. If the effort can be structured more 
efficiently, so that the same conclusions can be reached in a shorter time or with a greater degree 
of confidence, then a real benefit is achieved. 

Corresponding to this view, the scope of this study was made broad. While it included 
ways of decreasing the computer time of a simulation run, it also covered ways of using the 
simulation model and analyst together more efficiently. One way is to increase the confidence 
that others have in the validity of the simulation to aid the decision makers. This touches on the 
field of Verification, Validation, and Accreditation. The Army Materiel Systems Analysis 
Activity (AMSAA) was in the process of working with CECOM on VV&A of an important 
communications model. This provided an opportunity to cooperate in the area of techniques for 
assessing validation. 
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Validation   Support   for  a 
CECOM Model 

An important 
engineering simulation model 
is the CECOM System 
Performance Model (SPM). 
Nodes representing military 
operational facilities are 
linked by tactical 
communications networks 
using digital radios. Input 
message traffic may be 
scripted or generated 

statistically. Important parts of the model are the command and control functions, link protocols 
the types of radios included, and the electromagnetic environment. The model can be used to 
study message completion rates and delays as a function of system load. 

Validation is best done by a comparison of simulation output with real test data from the 
system being simulated. For this purpose an extensive set of development test data was available 
from the Enhanced Position Location Reporting System (EPLRS) radio engineering development 
etrort.  The question arose as to the best way to compare the data sets. 

A ,. JhC S!andard statistical technique for comparing two data sets is the test of hypothesis 
A null hypothesis of no difference between the sets is tested. If enough evidence is available to 
make the null hypothesis improbable, then the hypothesis is rejected; if there is not enough 
evidence, then all the procedure provides is an "I don't know" answer. 

An alternative procedure was previously developed by this contractor, which provides a 
metric expressing how nearly the same are the two data sets. The quality of degree of sameness 
rather than degree of difference, is the essence of validation.   For the current effort, software 
routines were developed using this approach and provided to AMSAA through CECOM to 
support the data analysis for the validation. 

Like many simulations, SPM models some natural effects as random processes, which are 
mathematical abstractions that have been found useful for such purposes. The computer 
implementations of the random processes use an internal random number generator to model the 
outputs of these random processes. An examination of the SPM code shows on the order of 100 
different calls to the random number generator. Such generators are really deterministic, but are 
supposed to generate sequences of numbers that share many of the properties associated with a 
truly random sequence. Unfortunately, some generators in use have been found to generate 
sequences with characteristics that are clearly not random. As an adjunct to the VV&A effort 
a set of 5 test programs was constructed and tested on existing generators, both good and bad' 
Iney were then applied to the generator used in the SPM. 



Synchronization of Random Number Draws 

SYNCHRONIZATION PRINCIPLE 
SIMULATION A 

REP1 REP 2 REP 3 

Simulations are often relied upon to make comparisons between different cases. These 
might represent different parameter settings, environmental effects, or different ways of using the 
system. The random number draws can introduce so much variability that the real effects of the 
factors to be compared are masked. 

The masking effect of random variation is an aspect of the real world that such models 
simulate well. But unlike the real world, the "randomness" has an accessibility that can be 
exploited to increase the precision of comparisons. If exactly the same random number sequence 
is used on each side of the comparison, then much of the randomness is effectively cancelled out. 
Complications arise, however, if the change in parameters from one case to the other causes one 
or more extra draws to be made to the random sequence. The comparison will be tight before 
the first extra draw and loose after it. An observed difference may then depend more on when 
the extra draw was made than on the real difference introduced by the parameter change. 

General techniques for ensuring that the random number draws remain synchronized were 
studied and refined. The procedures are easy to implement. In the simplest form the draws are 

made so that each replication 
has the same starting point 
(figure). Experiments were 
performed on a simplified 
communications model to 
evaluate the effectiveness of 
synchronization. It was 
possible to compare the 
sample sizes required with 
and without synchronization 
to obtain an equivalent 
precision in a comparison of 
simulation outputs. It was 
found that for this model 
synchronization provided 
precision equivalent to an 

increase in sample size by a factor ranging from 2 to over 100. The benefit is then seen to be 
large if the effect of interest is small compared with experimental error. 

Another technique for making comparisons using simulations is provided by the 
introduction of statistical experiment design techniques. This has the promise of allowing large 
numbers of comparisons to be made with efficient use of computer resources. Setting up, 
running, and analyzing large numbers of simulation cases is time consuming for the analyst, 
however. A system is envisioned to aid the analyst in carrying out the process. It would allow 
a baseline simulation to be the center point for a detailed investigation of parameter effects. 
Next, single-variable sensitivities would be determined, then the general effects of all the 
parameters when several parameters are simultaneously varied. Test cases illustrating this 
approach were developed. 

RANDOM 
NUMBER 
STRING 

REP1 REP 2 REP 3 

SIMULATION B 



Major Findings 

1) Engineering simulations are difficult to speed up in general ways because good ways 
of eliminating computation may often compromise model fidelity. Fidelity of an engineering 
model should be maintained because the model may have different uses in the future for which 
apparently superfluous fidelity is necessary (further discussion is on page 10). 

2) Formal validation in which simulation results are compared with test results from the 
system simulated is an important means of increasing confidence in simulation results. The 
validation metrics developed have proven to be useful indications of the degree of similarity 
between simulation and test (p 17). 

3) The random number generation scheme used in the SPM is adequate for the wavs that 
it is used in the model (p 22). 

4) There is no provision in SPM to keep the random number draws synchronized. 
Because there are many draws made throughout the model for many purposes, two cases with 
different parameters would not be expected to use the same random numbers for the same 
purposes. The safest thing to do is to make all runs with different starting seeds. SPM has a 
provision for doing just that (p 18). 

5) Synchronizing random numbers so that the same strings can be used for making 
comparisons has a major benefit for comparative studies using a simulation model (p 31). 

Major Recommendations 

1) Synchronize the random number draws in SPM and other important models used for 
comparative studies (p 32). 

2) Until a communication model can be synchronized, make all runs using scripted 
message input, rather than traffic statistically generated at the time the run is made. The scripted 
input may be generated statistically offline before the simulation run, and saved in case any 
comparative runs are to be made in the future (p 42). 

3) Until it is synchronized, make all runs using different seeds. This is a normal mode 
of operation in SPM using the low order bits of the system clock to provide the first seed (p 42). 

cm, u4) T° supPort future execution time improvements, introduce timing instrumentation into 
SPM by calling the system clock before and after major parts of the code are executed (p 42). 

5) Consider improving the random number generator from the current adequate one to a 
good one; GENK or GENH introduced later are candidates, subject to further testing (p 42). 

6) Consider the introduction of a semi-automated system for generating, running and 
analyzing statistical experiment designs to study system performance as a function of input 
parameters (p 39). 



1. INTRODUCTION 

The Importance of Simulation in Defense 

The subject of modeling and simulation has been identified by the DoD as one of twenty 
technologies critical to ensuring the long-term superiority of weapon systems [Schuppe 1991]. 
It was categorized as an enabling technology that offers capability for advances in weapon 
systems. It is widely used for analyses ranging from advanced planning to operational support. 

Some simulation models are deterministic, always giving the same result for the same 
input values. The majority of models, however, attempt to reflect the real-world variation that 
we refer to as "random." One might argue that all variation could be explained by a sufficiently 
detailed model. It will suffice to define random as a mathematical abstraction; a random variable 
or process produces outputs that individually and jointly follow specified probability distributions 
that reflect the variation seen empirically. The implementation in a simulation is usually 
accomplished by using so-called pseudo random number generators. Typically the generator is 
a small piece of computer code that from an initial seed generates a sequence of real numbers 
between zero and one. Although the sequence is deterministic given the seed, the sequence is 
intended to have many of the properties that a truly random sequence would have. These include 

• Uniformity across the interval 0 to 1 
• Apparent independence from one number to the next 
• Long cycle length before the sequence repeats. 

When a random number generator is used, in order to understand the behavior of the 
model we need to run the model more. This may be done by simulating longer periods of time, 
by looking at more than one sample, or by a combination. By running the simulation for a 
number of independent replications (using a different string of random numbers each time) we 
gain insight into how variable the responses of the system may be. By averaging results, we are 
able to estimate with greater precision what the average response of the system will be. There 
is a tendency in simulation studies to underestimate the number of replications needed to develop 
a full understanding of the variability of the responses. 

Often a model is used to make comparisons of results using different combinations of 
values of the input parameters. For example, a gun model might vary muzzle velocity, bullet 
mass, and shape. As a model is first used, the large effects are soon discovered and understood 
and more interest centers on effects that are small compared with the random variability. Also 
of interest are how different combinations of system inputs jointly affect the system outputs. 
Both these desires may lead to making more simulation runs. Once again, the number of cases 
run to gain a systematic understanding of how the system responds over all its possible input 
conditions tends to be underestimated. 

All in all, many models are in existence that are frequently used. Together they use a 
vast amount of computer time. The need to understand variability better and to average out its 
influence, and the need to understand the effects of changes in combinations of variables 
contribute pressure to make even more simulation runs. 



Types of Simulation Mnrfpk 

Even if the scope of simulation models is restricted to the DoD, there are really many 
different types, each with its own characteristics. There is no generally accepted categorization, 
and many simulation models have characteristics of several basic types. Some of the more 
important types for Army applications will be reviewed based on those given in a catalog of 
about 525 models compiled by the Joint Staff [1992]. 

Many models are constructed to estimate the effectiveness of a weapon system They 
range in complexity from simple models with a high degree of aggregation used in the early 
planning phase   or a system that might be developed sometime In the future.   At the other 

Zmi st"    ,8   ^ ""'ff m°uelS f°r SyStemS UndCr deveI°P-nt. Models also range in scope 
from m.ss.on level models such as Osprey [Webb et al 1987], which treats a complete negation 
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bullet weather, interference, compatibility, physical terrain, and the like. They frequently appear 
as parts of other models.  Examples are TIREM [ECAC 1983], GT-sig, which S thermal 
backgrounds, and MAPS, a CECOM model for electronic warfare studies.   oTen nume" 
integration is a key part of the computational load. numerical 
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communications (JTIDSC2 estimates the performance of a JTIDS network as decoyed) ' 

There is a great deal of current interest in distributed interactive simulations (DIS) for 
support of training and exercise rehearsal. A simulation often involves many participant each 
with their own computer and role to play. The simulation runs on each of the computers w" th 
information exchanged between them by means of protocol data units. The volume and speed 
of data exchange are issues that are much more critical than simulation computationalspeed 
Examples are the Untethered Land Warrior [Sauerborn 1995] or Janus [Army 1986] 



Possible Techniques for Accelerating Simulations 

Since computer simulation is so prevalent, the amount of computer time used to produce 
simulation results is enormous. Techniques for decreasing computer run time are therefore of 
considerable interest. A reasonable step is to see if the numerical calculations done in a 
simulation can be arranged more efficiently. This might work very well at first, but has 
diminishing returns. Optimizing compilers have been around for a long time, and do a good job 
in rearranging computations for best utilizing the capabilities of existing computers. Improving 
them is difficult. 

Another approach is to do the calculations faster, perhaps with a newer computer or an 
advanced architecture that, for example, might allow parallel computation. New computers are 
interesting, but costly to buy, install, integrate, learn, debug, and get running existing application 
software. 

An alternate approach is to look beyond the computational level and find a completely 
different solution that gives equivalent answers. A perhaps apocryphal story concerns Gauss as 
a young boy. To keep him occupied during math class, his teacher tasked him to add the 
integers from 1 to 100. After apparently doodling for a minute or so, he came up with the 
answer. He showed the astonished professor that by adding the first and last numbers, second 
and next to last, etc, always getting the same result, he could reduce the problem to a single 
multiplication. 

An example from this writer's past arose in the late 1960's at McDonnell Douglas 
Aerospace. A library of subroutines for missile guidance system analysis contained a subroutine 
for solving simple linear equations that had been "optimized" by specializing to three dimensions 
and simplifying data indexing. A numerical analysis specialist observed, however, that the 
solution algorithm used was Cramer's rule (ratio of determinants). Use of Gaussian elimination 
easily beat the "optimum" subroutine. 

Another example arose when converting a system-level antisatellite simulation program 
from large main-frame computers to run on a small personal computer. Although only a small 
part of the code, the engagement planning function uses the large majority of the run time. A 
simple prescreening test was added to the code to avoid even trying to compute an engagement 
plan if the satellite track was beyond the maximum reach of the interceptor missile. This simple 
technique reduced run times by a factor of eight. 

Other standard approaches are to use variable step sizes in numerical integration 
procedures, to perform detailed calculations offline and replace them in the simulation model by 
either a table lookup or by an analytic approximation, or to aggregate low order results. In fact, 
aggregation has been called the most pervasive type of approximation in simulations [Bratley 
1983]. 

So rearranging the calculations, better numerical analysis, or prescreening are valid 
approaches. However, there does not seem to be a general scheme for finding them. The 
challenge is to do it in a way that does not degrade fidelity. 



The Cost of Making a Simulation Run 

Just a few years ago computer systems were built around large expensive main-frame 
computers. Simulation runs were made in batch mode by sending a "job" to the mainframe often 
using smaller computers to perform input and output to the faster mainframes. Costs of 
acquiring, equipment leasing, maintaining, and operating the computer centers were recovered 
by charging users fees based primarily on the amount of computer time used. 

Now it is commonplace for simulations to be run on work stations that are purchased as 
capital equipment and operated and maintained by the user. The cost of computer time has 
become highly nonlinear. The following table makes a whimsical analysis of the benefit of 
getting a simulation to run twice as fast. 

From To Value Reason 

1 sec Vi sec None Response is essentially instantaneous anyway 

16 sec 8 sec Appreciable A computer pause while the user is ready to make 
the next input is very annoying 

3 min IVi min Little Either delay is long enough to get a cup of coffee 
or go to the restroom 

90 min 45 min Large Analysts put in long runs just before they go to 
meetings; if runs are shorter, then there will be 
pressure to get the meeting over with 

20 hr 10 hr Small In either case there is one turn around per day 

4 days 2 days Very great Just one turn around in a work week causes 
everyone to forget what the project is about; two or 
even three makes for good discussion in the weekly 
report. 

Although this analysis lacks the rigor for serious consideration by a human factors journal, 
it does illustrate that the real benefit of a time saving is in what the human operator can do with 
it. It almost goes without saying that time saving is much more important on a model for which 
individual runs are long, even if the total time involved is smaller than for other models that are 
run much more frequently. 

Often more important than computer time is the time taken by an analyst to set up, verify, 
and analyze the results of the runs. This suggests that a broader look at run effectiveness is 
preferred to a limited treatment of just computer run time. 



Organization of This Report 

Section 2 is a short review of large-scale communications models in terms of their 
distinguishing characteristics and use at CECOM. An introduction to the model selected for 
special emphasis, called SPM, is given. 

If its users have confidence in a simulation model, then there will be a general perception 
that time used in running and working with the model will be well spent. Validation is an 
important contributor to such confidence. An ongoing validation effort of the SPM was 
supported as part of the current study. A new statistical approach to comparing simulated and 
real data was reduced to computer routines that were then used for the validation. What was 
done is discussed in Section 3.  Mathematical details are discussed in Appendix A. 

Many simulations use random numbers, and most of these rely on routines supplied with 
the computer system. Historically, some such routines have been disappointing in their emulation 
of theoretical random properties. Tests for random number generators were developed, 
themselves tested on 14 generators of both good and bad quality, and then used to assess the 
generator in SPM. A general description of this work and its application to the SPM generator 
are given in Section 4. Appendix B gives details of the tests, generators, and starting seeds used. 
Fortran listings of the tests and generators are also included. A more comprehensive collection 
of testing results is given in Appendix C. 

The work on synchronization of random number generators is given in Section 5. This 
includes illustrations of what happens when synchronization is lost, a simple communication 
simulation built to test synchronization schemes, and an assessment of the gains obtained using 
it for comparative studies. The section contains a recipe for implementing it and a refinement 
as used in a large simulation is given in Appendix D. 

The topic of statistical experiment design as it can be applied to simulation studies is 
discussed in Section 6. Included in the section is a detailed illustration of its use. Issues 
involved in implementing an automated approach are discussed. A catalog of actual designs 
useful for simulation studies is given as Appendix E. Details of the example application are in 
Appendix F. 

Section 7 reviews other general techniques for speeding up simulations that were looked 
at. Most general techniques involve approximations that might degrade fidelity if not used 
carefully. Because of the importance of high fidelity for engineering simulations, these 
techniques were de-emphasized in this study. Some work was done on a model for studying a 
technique called staged aggregation. Results, which were largely negative, are presented in 
Appendix G. 

Section 8 presents conclusions and discusses how improvements might be implemented. 

References are collected at the end of the report. 



2. CECOM LARGE-SCALE COMMUNICATIONS MODELS 

General Features 

As the Army moves into the 21st century, increasing emphasis is being placed on the 
power of information. CECOM supports this evolution towards Force XXI by developing digital 
information systems designed to promote rapid and accurate decision making.   Modeling and 
simulation are used by CECOM as effective and efficient means of supporting the development 
integration, and testing of these systems. 

This work was supported by the Modeling and Simulation Branch of the C3I Modeling 
and Simulation Division of the CECOM Research, Development, and Engineering Center   The 
concern of this branch is engineering models that support ongoing CECOM development areas 
primarily in the area of digital combat radio networks. 

The philosophical basis for engineering models is such that many of the standard ways 
of speeding up the models may be unpalatable. These models are often started early in the 
concept definition phase of a system acquisition and follow it through design, development 
u ui^ dePloyment- The uses for the simulation model are not all anticipated ahead of time! 
High fide ,ty is usually prized. Often the model will emulate the actual workings of the system 
particularly those parts that are implemented as computer code. While a systems analysis model 
might represent communications protocol by a statistical delay, an engineering model would be 
expected to contain a detailed and faithful emulation of the protocol. 

As a result, the use of approximations or simplifications in parts of the model may not 
be acceptable. While they might give satisfactory results for the large majority of applications 
some future application of the model might give misleading results. 

For example, consider a hypothetical model of an infrared seeker that is used to select an 
aimpoint from an extended target image at the terminal phase of intercept. A satisfactory and 
fast model for use in high fidelity system effectiveness simulations might use a geometric 

ZI* ,T ? 6 TT f°Cal Pl3ne imagC th3t dePends 0n e<Wment approach angles, 
together with statistical characterization of miss distances in each dimension.   An engineering 
model, on the other hand, would be much more likely to represent pixel-by-pixel processing and 
to emulate the real-time algorithm used to calculate an aim point. For most applications both 
models would give essentially equivalent statistical results. If anomalous behavior were observed 
during a system test, however, the engineering model would be much more useful in studying 
possible ways of avoiding similar problems in future tests 

10 



CECOM System Performance Model 

This model (SPM) was selected as a prototype for study and analysis in this effort. It is 
an engineering simulation of the performance of combat radio networks connecting Operational 
Facilities. These might be a Brigade Tactical Operations Center, a Battery Fire Direction Center, 
an individual soldier acting as a forward observer, or an armored cavalry vehicle. Messages 
might include intelligence reports, node status and location, weather predictions, movement 
orders, firing plans, fire support requests, target assignments, etc. 

The message traffic between the nodes may be scripted or may be randomly generated 
in the course of the run. In either case, additional message transmissions may result from the 
receipt of messages. 

The major parts of the SPM are: 

• Command and Control Component Model 

• Protocol Component Models, including models of the Tacfire, Link Layer, 188-220, 
188-220(), and TMG/INC protocols. 

• Communications Component Models, including Single Channel Ground and Airborne 
Radio System (SINCGARS), SINCGARS System Improvement Program, Enhanced 
Position Location Reporting System, Mobile Subscriber Equipment Packet Network 
(MPN), and earlier AN/PRC- radios. 

• Communications Realism Submodel, including propagation effects due to terrain 
between transmission and reception points along paths taken by vehicle-borne radios. 

The SPM is implemented in the General Simulation System language. This system was 
developed and is marketed by Prediction Systems, Inc. of Spring Lake, New Jersey. It allows 
the model to be described in a structured english language based system. Subroutines or 
functions written in C code may be used. It runs on Silicon Graphics workstations under the 
UNIX operating system. 

A typical run might involve 200 nodes interconnected by 30 networks each containing 10 
to 30 radios. A single node may be on several (up to 7) networks by using multiple radio sets. 
A time period of several hours might be simulated, with the simulation run itself taking several 
hours. Important outputs are the percent of messages that are completed, the percent that are 
completed within a specified speed of service, and the individual completion times (from message 
creation to receipt). 

11 



3. SIMULATION MODEL VALIDATION 

Importance of Validation 

The scope of the current study has been expanded somewhat from speed of running a 
single simulation to the broader context of using the model more effectively. If a model is not 
valid for its intended use, then effort is wasted. If it is validated and accredited, then the 
resulting increase in confidence contributes to effectiveness. 

MT,    
RTUt definitions have been developed by a Senior Advisory Group convened by the 

Military Operations Research Society [Ritchie 1992]: 

Validation: The process of determining the degree to which a model is an 
accurate representation of the real world from the perspective of the intended 
uses of the model. 

Accreditation: An official determination that a model is acceptable for a 
specific purpose. 

By these definitions, validation is a continuing effort that might be going on throughout the entire 
sequence of conceptualizing the simulation model through exercising it in a production mode 
The validation work might culminate in several accreditation decisions based on different 
purposes for the model. 

In both military and civilian contexts simulation often provides a major input for makine 
critical decisions concerning the real system being simulated. Those persons who are responsible 
tor making such decisions are rightly concerned about the fidelity of the simulations in 
representing the real systems. The simulations must correspond faithfully to those aspects of the 
real system that contribute to making the right decision. From this point of view, the subject of 
validation of the simulations is the basis for the simulation being an effective and trustworthy 
representation of the real system. uuMwunny 

As one might expect, a great deal of attention has been given to this issue. However 
here has not been a great deal of resolution. It is generally agreed that in order to validate L 

simulation model, empirical data are necessary and statistical procedures are desirable. However 
omnibus methods for validation do not exist, and many approaches are problem specific. This 
concern led the Army Research Laboratory to sponsor a research study conducted by this 
contractor. The main thrust of the work was the development of a metric that expresses the 
degree of validation that has been demonstrated. In its basic form, the metric is designed to 
compare empirical data from the real system, assumed to be a very short list, with data from the 
simulation, which may be extensive since the simulation is by its very purpose intended to be 
an inexpensive surrogate for the real system. 
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Hypothesis Tests and an Alternative Approach 

It is agreed that validation should be based on a match between empirical and simulated 
data, but there is not usually any clear definition given for what constitutes agreement. Because 
variation is an essence of empirical reality, a statistical approach seems appropriate for assessing 
the closeness of the agreement. Many texts and journal articles propose standard statistical tests. 

Formal statistical hypothesis tests are designed to determine whether there is sufficient 
evidence to assert that two populations are different; for example, is a new treatment better than 
a control. If they are really different, then as more and more data are obtained, the chances are 
better and better that the measured results will show them to be different. No matter how small 
the real difference is, if the sample sizes are large enough, the null hypothesis of no difference 
will eventually be rejected. 

For validation the question is whether or not two entities are essentially the same. This 
is more than a semantic distinction; almost any null hypothesis of no difference between two 
populations can be rejected if enough data are available. We already know that a simulation 
differs from its target system: one runs on the computer and the other in the real world. What 
we would like to know about a simulation is whether it gives results that are close enough to 
those obtained with the real system. Let us suppose that it is possible to establish criteria of 
closeness for each of the outputs of the system that are of interest. We can then consider the 
degree of faith that the simulation gives results that are close to those from the real system. 

This formulation is similar to a confidence limit problem. A confidence region is usually 
defined for fixed confidence coefficient y to be the set of parameter values 0 that are such 
that a test would not be rejected. Here the set of values of the difference between simulation and 
reality is given, and we may use the confidence level as a metric for validation. This metric 
ranges from 1, indicating perfect agreement, down to 0, a mismatch. If a lot of real data are 
available and the model matches these data well, the metric should be close to one. If data are 
few, or the model does not match the data well, the metric should be near zero. 

To state this idea another way, if the simulation in fact matches the real system well, then 
as more and more data are 
obtained the metric should 
increase to near one. If the 
agreement is poor, then it 
should decrease to zero. If 
the situation is borderline, 
then the confidence would 
likely just dither around 
intermediate values. 

VALIDATION APPROACH COMPARISON 
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Validation of the SPM 

A Verification, Validation and Accreditation effort for the CECOM System Performance 
Model involving CECOM and AMSAA was underway, which provided an opportunity to support 
the W&A analysis under this contract. Initial discussions of the philosophy of validation of 
simulation models led to a decision to try out the metric approach rather than standard hypothesis 
testing. Previous efforts of a similar nature using large quantities of available data had 
experienced the problems noted with statistical hypothesis testing. In particular, a standard test 
(the KS test) of whether two populations have the same statistical distribution had rejected the 
hypothesis that simulated and observed message delay time data were from the same population, 
even though it was clear that differences were of no practical consequence. 

The validation plan for the System Performance Model centers around a field experiment 
involving the Enhanced Position Location Reporting System (EPLRS). For over a hundred 
needlines (links between nodes), data are available on the number of messages sent, the number 
received, the number received within the specified speed of service, and the transmission delay 
time. The simulation was set up with the identical laydown of radio sets and scripted with the 
same set of messages sent. 

It was decided that as part of the support to the VV&A effort, computer routines would 
be developed to implement the computation of the validation metric. Previously the calculations 
had been done by hand, which was impractical for the large data sets expected. It was further 
noted that the data for comparison were of two types: 

• Binomial data in which the result is one of two possible outcomes. Each 
attempt at message transmission either met with success or not. If successful, the 
delay was either within the speed of service requirement or not. 

• Delay time data representing the actual time from transmission until reception. 

Statistical procedures are available for testing hypotheses about whether two binomial 
proportions are equal, or for establishing confidence intervals on single binomial proportions. 
Methods do not seem to be readily available, however, for determining the confidence with which 
two proportions lie within a specified interval. A new procedure for this purpose was required. 
Moreover, the procedure needed to work for sample sizes ranging from just a few (say 5) to 
several thousand. The case in which all trials were successes was common, but for some a 
significant percentage were failures. 

The most familiar statistical techniques for numerical data assume a functional form for 
the distribution, such as the Gaussian or exponential. For the delay time data there was no basis 
for any particular form from either experience or theory. Therefore a nonparametric approach, 
in which no particular form is assumed, seemed appropriate. 
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SAMPLE BETA DENSITIES A Metric for Binomial Data 

If the unknown probability 
of success p on any one trial is 
viewed as having a probability 
distribution which is uniform 
between zero and one before data 
are obtained, then after observing 
K successes in N trials, p has a 
beta distribution. The figures show 
that the probability density is 
diffuse for small values of N and 
concentrated for larger values (the 
vertical axes are scaled arbitrarily 
to emphasize the relative shapes). 
The peak is near the ratio K/N. If 
K = N, the mode is at the extreme 
right end of the density. 

Using this approach, the 
probability that two binomial 
proportions pj and p2 are within 
±d of each other can be calculated 
from the beta distributions on each 
p. The numerical evaluation of this 
expression over wide ranges of the 
five parameters (d, N1} Kt, N2, and 
Kj) is challenging, but is required 
for the SPM data. Integrals of the beta densities are replaced by summations with finite step 
sizes. The step sizes must be small enough to give satisfactory accuracy, but not so small as to 
give unacceptably large computation times. If N is small, a fairly large integration step size 
will give accurate results. If N is large, however, the density is very peaked and a small step 
must be used. On the other hand, the density is negligible over part of the range. A second 
problem is the exact evaluation of the binomial coefficients for N things taken K at a time, 
which is equal to N! / K! (N-K)!. If N is large then this expression will cause computational 
overflow except when K is close to N or 0. The techniques used to balance accuracy and 
speed are given in Appendix A. 

The question arises why all the concern with accuracy. Surely the user would not care 
if the confidence were really .86 when .88 is reported. The answer is to insure that data sets will 
be internally consistent. For example, the same result should be computed if the samples are 
reversed, or if the roles of K and N-K are reversed for both samples. No jumps should be 
discernable as sets of data values make transitions through boundaries separating regions in which 
different computational procedures are used. Because all such constraints may not be anticipated, 
it was decided to strive for three decimal place accuracy in the computer implementation, called 
BETALIM2, that was supplied for use in the VV&A effort. 

15 



A Metric for Delay Time Data 

For processing the message delay time data, a second procedure has been developed. The 
metric expresses the confidence that the two populations are within a given tolerance ± d, and 
is constructed based on differences between the ordered observations from the simulation' Xt, 
X2, ... , Xm, and the ordered observations from the real system Y„ Y2, ... , Yn. The theory is 
based on the presumption that if the two are the same, then any arrangement of X's and Y's 
in the combined sample is equally likely. 

The procedure developed uses the Mann-Whitney U statistic, which is a count of the 
number of instances in which a member of the second sample is less than a member of the first. 
The value of U can range from 0 if all the observations in the second sample are greater than 
any in the first, to N, x N2 if all are less than any in the first. If two samples are very 
different, then U will have a value close to one of these extremes. If they are the same, then 
U will probably have a central value. If a sample of Nl X's is really from the same population 
as a second sample of N2 Y's, then if all the Nt + N2 observations are sorted, then any 
particular pattern of X's and Y's is equally likely to occur. The probability distribution of 
U in this case can be computed from a recursion relationship giving the number of possible 
arrangements of N, X values and N2 Y values that give the same value for U. For large 
values of Nt and N2 a Gaussian approximation is available. This is based on the asymptotic 
distribution, but is considered to be "reasonably" accurate for equal sample sizes as small as 6. 

To form a metric giving the confidence that two samples represent populations that are 
within an indifference ± d of each other in location parameter, the U statistic is computed 
twice using the second sample values with d added and subtracted. The values of U are 
compared with the percentage points of its distribution to obtain values that are differenced to 
form the final metric. 

The routine is complicated by the need to treat cases where one or more differences X. 
-Yj are exactly equal to the tolerance -d or +d. Different combinations of possibilities need 
to be treated correctly in the computerized algorithm. 

A Fortran routine was developed implementing this procedure. At first, only the large- 
sample approximation was implemented. The working version, called METRIC8, was developed 
that improves the large-scale approximation slightly, but more importantly adds the exact 
computation for cases in which both sample sizes are less than 20. This routine works by 
building a table of the exact distribution, which is referenced for particular values of U. This 
version was used by AMSAA to reduce the data for the validation effort. 

Attempts were made to develop a version that would use the recursion relationships to 
obtain distribution values as they are needed. If successful, this approach could have covered 
the cases when only one sample size is less than 20. The attempts failed to achieve results in 
reasonable amounts of computer time because they got tangled up in a complex tree of procedure 
calls, so the approach was abandoned.  This case occurs rarely if at all in the SPM data. 
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Application of the Approach to SPM 

The metrics from the software routines provided were used to support the comparison of 
the simulation based on test data obtained from EPLRS development testing. The results of the 
application were presented by John Wray [1997] of AMSAA. He contrasted the conventional 
statistical approach using statistical hypothesis tests to the metric approach, which provides the 
difference level of the model in comparison to the test data. 

Two scenarios using low data rates were compared, containing 132 radios and 115 duplex 
needlines. Approximately 10% of the radios were located on moving vehicles during the test. 
The simulation was run using the scripted communication traffic and the actual radio positions 
and movement from the tests. For each scenario, the simulation was replicated three times using 
different random number seeds. 

For the message delivery time data, comparisons were made using the value of the 
difference d from 1 through 5 seconds. Plots were obtained giving for each time difference the 
percentage of needlines for which the confidence as indicated by the metric was at least 80% and 
90%. Similar plots were obtained for the message completion rate, using difference levels of 
from 5% to 10% of the completion rates from the tests. 

Intelligence 
Warfare 
exemplified 

LINES FOR WHICH METRIC IS > 80% A A   . 
A further comparison 

was made in which data were 
separated by length, 

and Electronic 
messages 

long messages, 
for which the required speed 
of service was 90 seconds; 
Fire Support messages 
represented medium length 
messages, which were 
required in around 20 
seconds; short messages, for 
which the requirement was 4 
seconds, were Air Defense 

Artillery messages. It was found that for long messages, the model tended to predict slightly 
shorter delivery times than found in the test data, and for short messages the opposite trend was 
observed. The figure is representative of those used by Wray to present results (data in the figure 
are not real). 

In summary, the metric approach appears to give comparisons of simulation and real data 
that are useful for analysts and that contribute to confidence in the simulation models. 
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4. RANDOM NUMBER GENERATION 

Use of Generators in SPM 

SPM makes many calls to its pseudo random number generator. From a review of the 
code there are around 100 calls made in over 60 of the 300 or so procedures that comprise the 
model. According to the code and the available documentation, these are used for many 
purposes, including the following: 

• Statistical message generation 
• Statistical treatment of mutual interference 
• Message priorities 
• Scheduled time slots for each radio set 
• Frequency resource for each radio set 
• Random access and processing delays 
• Random occurrence of collision 
• Percentage of chips affected by each collision 
• Occurrence of frame synchronization 
• Number of hops in a frequency segment 
• Transmit profile for an interferer 
• Occurrence of a bit error 
• Selection of time slot block index 
• Whether each leg of a relay is established 
• Calculation of instantaneous power 

There are several options available in GSS for generating random numbers: 1) using 
RANDOM as a variable name sets that variable to the next random number in the interval 0 to 
1; 2) calling UNIFORM produces a random number between specified limits; 3) calling EXPON 
gives an exponentially distributed number, useful as a message generation time; 4) calling 
TEXPON gives an exponentially distributed number truncated to avoid excessively long values; 
5) NORMAL gives a number with the Gaussian or normal distribution; 6) TNORMAL gives a 
truncated Gaussian number. 

A random number generator must have a starting point and SPM has an interesting feature 
to ensure that the starting point is random from one run to another. This is to use the current 
value of the low order bits from the system clock. Optionally, the user may set the starting point 
to a specified value read from one of many input files. However, this requires a change to a line 
of code and recompilation. This procedure would be the norm during the debugging process 
when a new case is set up or code changes are made. 

It is recognized that generators are really deterministic; they always give the same 
sequence given the same starting point. However, their effective use depends on their behaving 
like random sequences in terms of frequency distribution, lack of repetition, and apparent 
independence of successive elements. Testing for these properties is the next topic of discussion. 
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Properties of Random Number Generators 

Surprisingly, the random number generators supplied in specific computer systems have 
historically often been deficient. Due to their importance in CECOM simulations, an effort in 
evaluating the generators used seems worthwhile 
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LINEAR CONGRUENTIAL GENERATOR 
Most generators work as follows: 

an integer seed (usually a large integer) is 
either supplied as an argument when the 
routine is called or stored internally in the 
code; the next integer in the random 
number string is calculated and used to 
replace the seed; the routine returns a real 
number between 0 and 1 based on the 
new value of the seed. The most 
common type is shown in the figure. Its 
properties are determined by the 
multiplier a, the increment c (often just 
0), and the modulus m. Since the cycle 
will eventually repeat and the period can 
be no larger than the modulus, m is 
usually taken to be a large value, equal to 
or close to the word length of the 
computer. 

There has been a great deal of theoretical work on good choices for the multiplier, 
increment, and modulus. Much of it relies on number theory to determine choices that make the 
cycle length as long as possible, and then to prevent obvious lack of randomness given maximum 
cycle length.  A summary is given by Knuth [1969]. 

The linear congruential generator calculates the n-th value from just the previous value. 
A more complex type computes the next value from two of the previous values, often with a lag 
between. For example, Xn+1 = (Xn + X..J modulo m. These are called Fibonacci generators 
because they generalize the Fibonacci sequence 1, 1, 2, 3, 5, 8, 13, ... in which each number 
is the sum of the preceding two. They also require internal storage of intermediate numbers. 

In addition to long cycle length, a good random number generator would share other 
properties with a truly random sequence.  Among these are: 

• Uniformity between 0 and 1 
• Uniformity of pairs over the unit square, triples over the unit cube, etc. 
• Independence of successive values. 

Although some theoretical results are available, it is usual to rely on empirical tests of such 
properties. 
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Specific Tests Developed 

Although packages of tests for random number generators probably exist, none was 
available for use in this effort, so a battery of tests was developed and programmed. Each will 
be described. 

The first test simply prints out the first three draws for each seed in both integer and real 
form for inspection. The second attempts to check cycle length by brute force. It makes up to 
30,000 successive draws of integers for a given starting seed, compares each with up to 20,000 
last entries in the list, and stops if a match is found.  It was found to be impractical to use. 

Tests 3 through 7 were found to be effective tests for generators. They are fast running 
and effective in separating known bad from good generators. Tests 3 through 6 implement ideas 
mentioned by Knuth [1969]. The seventh is an implementation of a concept for a more stringent 
test due to Marsaglia [1985]. 

Rantest3 - Pair Uniformity Makes 20,000 draws of pairs of real numbers and sorts them 
into a 64 x 64 grid.  It then does a chi-square test to check for uniformity. 

Rantest4 - Gap Test Counts the number of successive real number draws for which no 
element lies between values a and ß. Proceeds for a total of 7000 cases. It was run with the 
width of the gap (ß - a) equal to .1 and the beginning point set to the five values 0, .15, .45, .75, 
and .9. Thus, five different gaps were used in the testing. This is a particularly important test 
for applications such as SPM because random number draws are often used to determine 
probabilities of events. Good performance means that the recurrence times of such events will 
be as expected by theory. 

Rantest5 - Permutation Test Draws 5000 sets of 6 numbers and categorizes each by 
which of the 6! possible permutations they fall in when sorting them by size. 

Rantest6 - Run Test Finds the lengths of runs in which successive values are all 
increasing, for 40,000 runs.  Runs of 8 or more are lumped together. 

Rantest7 - Overlapping Triples Sorts 30,000 overlapping triples of numbers into an 8 x 
8x8 grid, and tests for uniformity. Because the triples are overlapping, the test also will detect 
lack of independence. 

In order to test the tests, a battery of 14 random number generators has been assembled. 
Three are generators that have been used in developing simulations by the author. The rest are 
implementations of generators mentioned as both good and bad examples by other authors. The 
generators are described and listings given in Appendix B. Testing of each Rantest was 
performed with a set of 23 seeds. Most tests take about a minute of computer time on a 486 
personal computer. The exception is the cycle length check in Rantest2, which takes about 25 
minutes per seed if no repeat is found. Fortunately, other tests seem to detect generator-seed 
combinations for which short cycle length is a problem. 
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Output from the Rantest Routines 

Suppose Rantest3, which counts the frequencies of successive pairs of random numbers, 
is applied to a specific generator. The result is a 64 by 64 array of integers, whose sum is 
20,000. If the generator works properly, then all cells are equally probable and the numbers in 
the cells would show some random variation around the average of 20000 / 642 = 4.88. Let 
E( be this expected cell count and let A; be the actual cell count for cell i. Then the statistic 
(A; - E;)2 / Ej summed over all cells has a distribution that is approximately chi-square with 
degrees of freedom equal to the number of cells less 1. The test routine calculates this sum and 
uses the functional form of the chi-square distribution to calculate the probability that the value 
obtained would be this large or larger due to chance if the cells are really equiprobable. A partial 
output for GEN_K follows (the complete output is in Appendix C). 

PAIR UNIFORMITY CHI-SQUARE TEST FOR GENERATOR: GEN_K 
2( 

SEED 
20000 PAIRS, SORTED INTO 64 BY  64 GRID 
D       VALUE CHISQUARE P VALUE 
2           1 4129.54 .349621 
3           2 4088.58 .526107 
4           3 4016.49 .806821 
5           4 4088.17 .527910 
6   123456789 4120.52 .387005 
7     1111111 3944.40 .952956 
8       6999 4119.30 .392197 
9      65536 4159.03 .238767 

If the generator is good (this one is), then the P values will themselves be randomly scattered 
between 0 and 1. If the generator is not good, then at least some of the P values will usually be 
small.  Some are so extreme that the P values are near 0: 

PAIR UNIFORMITY CHI-SQUARE TEST FOR GENERATOR: GEN_F 
2 0000 PAIRS, SORTED INTO 64 BY  64 GRID 

SEED       VALUE CHISQUARE P VALUE 
2 1 450315.00 .000000 
3 2 449300.40 .000000 
4 3 450047.90 .000000 
5 4 449123.90 .000000 
6 123456789 451006.80   .000000 
7 1111111 449488.40   .000000 
8 6999 448922.00   .000000 
9 65536 449632.20   .000000 

•   •   • 

Output tables from the other Rantest routines are similar, except that Rantest4 is written 
to give P values for 5 different gaps, so that 5 columns of P values are printed. 
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Testing the SPM Generator 

For applying the Rantests to the SPM generator, a slightly different procedure was used 
than for the test generators. The testing procedure for the 14 test generators was to compile the 
Rantest routines with the call changed to the name of each generator in turn. The generator used 
in SPM is the one provided by the GSS system. For testing it, a file of 70,000 successive values 
was constructed for each of the 23 seeds, which was then used to run the tests at CECOM. 
Rantest3, Rantest5, and Rantest7 each use a fixed number of random numbers less than 70,000. 
Rantest4 uses a variable number until a specified gap count is achieved. The gap count was 
reduced from 7000 to 6500 so that the file would not be exceeded. Similarly Rantest6 was 
modified; 40,000 runs of length up to 8 was reduced to 25,000 runs of length up to 6 for the GSS 
generator. 

For summarizing the results of all tests, 
it is convenient to use a plot. The P values 
resulting from all tests on a given generator, 
approximately 200 in number, are placed in 
rank order, then the values plotted against order 
number. A good generator like GEN_K gives 
a plot that is essentially a straight line from 
(0,0) to (1,1) as shown in the top figure. The 
second figure, for GEN_L, uses the multiplier 
of the notorious RANDU. This generator was 
supplied by IBM as a library routine in the 
1960's. It was good enough to be supplied but 
was discovered by users to have decidedly 
nonrandom properties. It deviates considerably 
from the 45 degree line. 

The final figure gives results for the 
GSS generator. The deviation from the 45 
degree line is noticeable, but not as great as for 
GEN_L. This would suggest that the generator 
is not the best, but is probably adequate for 
most    applications. In    particular,    the 
applications in the SPM would not seem to 
require a great degree of subtlety in the 
interrelationships between successive random 
number draws to attain answers that are reliable 
for the needs of the analyses made. 

COMPOSITE RESULTS 



And What if a Generator is Bad? 

If a given generator fails one or more of the Rantests, then the sequence of generated 
numbers does not share some property of theoretically random numbers. How serious this may 
be depends a lot on how the numbers are used. Marsaglia [1985] developed his tests to support 
"... increasingly sophisticated Monte Carlo uses, such as in geometric probability, combinatorics, 
estimating distribution functions, comparing statistical procedures, generating and testing for large 
primes for use in encryption schemes, and the like." 

One misuse of random numbers is to rely too heavily on low-order bits. If entities are 
to be assigned at random to two classes, one might be tempted to make the assignment according 
to whether a random integer is odd or even. The low order bits are known to be decidedly 
nonrandom even for generators that may otherwise be reasonably good. The Rantests did not 
check low order bits. 

Marsaglia goes on to say that for most purposes generators work remarkably well, and 
even bad generators may be good enough. 

In most cases the user of a bad generator will not notice that anything is amiss. Attempts 
were made to use bad generators in simulation models discussed elsewhere in this report to see 
if their effect would be noticed, with negative results. The output looked much the same with 
good or bad generators. Presumably it would be possible to find some element of the behavior 
of the simulation that is similar to a Rantest that a bad generator flunked, then introduce 
additional model output that would find this bad behavior, but doing so would be difficult and 
contrived. 

Still, if a generator is bad, then the simulation using it is not modeling exactly what was 
intended. The answers are wrong without giving the user any indication. A Monte Carlo routine 
designed to evaluate an integral will be converging to the wrong value. We may speculate that 
the degree of error may not be very serious in a case of interest, but whether or not this is true 
is unknown. 

On the other hand, it is known that bad random number generators can lead to bizarre 
behavior observable in details of the output. A specific example of this happening could not be 
found, however. More often, an analyst may try to explain strange details as being an artifact 
of the generator (the author has been guilty). 

As a final thought, suppose that the generator has been demonstrated to be beyond 
reproach. Then any concerns that the analyst might have are alleviated. Any strange-looking 
behavior is either a problem with the model or else is just due to a strange sequence of random 
numbers. It is easy to determine which is the case, simply by rerunning the case with a different 
random seed. For example, a simulation of communications between four radios, to be discussed 
in the next section, had the first 5 transmission attempts all interrupted by interference, which 
should be a rare event. In this case it was just an unusual sequence of draws. The effect 
disappeared as other cases were run. 
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5. RANDOM NUMBER SYNCHRONIZATION 

Purpose of Synchronization 

Often simulation runs are made to compare different system options. The original 
requirement description for this effort mentions use of simulations to evaluate the impact of 
doctrinal or operational changes, and the effectiveness of technology insertion. In order to make 
effective comparisons between different cases, it is desirable to cut down on variability of the 
comparison. One way to do this effectively, is to take care that each entity that uses random 
numbers will always see the same stream. If this is not done, then the random numbers used in 
different cases may start out the same, then diverge at some point. This can make comparisons 
between cases misleading, as an example will show. 

Suppose that a radio set is used 
to receive messages that are sent at an 
average rate of one every 3 time units. 
When a message arrives, there is a 
probability of 10% that it will be 
missed. If not, then the radio set is 
occupied in receiving and processing 
the message for a random time of 
average length 5 units. 

A simulation was written to 
determine  the  number of messages 
received in 100 time units with this 
setup.     This  program  consisted  of 
about 400 lines of Fortran, of which 
only about 20% was new, the rest 
being  reused   from   another  model. 
First, all random number draws were 
made  from  the  same  string.     The 
average was about 12 messages, with 

the range being 8 to 16. 

A second run was made in which the arrival rate was increased to one message every 2Vz 
time units. More messages should be received. Out of 20 cases, only 10 were such that more 
were received. Five received the same and 5 received fewer. The reason is not that somehow 
a form of contention arises at a higher input rate, but that different random numbers get 
associated with the messages. 

The simulation was rewritten to segregate the draws for message arrival times, reception 
probabilities, and processing times. This is done by keeping track of three different seeds and 
making each call with the appropriate one. This time, a comparison showed that in 15 of 20 
cases there were more messages received at the higher rate, in 4 the same number, and in only 
one case one fewer messages was received. The sample sizes used are not large enough to prove 
the case, but the results suggest that random number synchronization bears a closer look. 
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A Simulation for Developing Synchronization Methods 

It is possible to structure random number draws in such a way to reduce the variability 
of comparisons to be made using a simulation model. To demonstrate the use of this technique 
and to study its effectiveness in communication systems simulations, a simulation model was 
developed, which is simple but of more substance than that on the previous page. Once again, 
it was adapted from an existing event-oriented model. Of about 900 lines of Fortran, about a 
third were reused, consisting of the event calendar, input and output, and utility routines; two- 
thirds were new, consisting of the processing associated with the occurrence of the events. 

A small number of observation posts are able to communicate with each other by radioing 
messages of varied lengths. Events occur that cause one post to send another a message. 
However, the message transmission may only be initiated during a time slot that is assigned to 
the sending post.  The assignment of time slots cycles among the posts. 

If a transmission attempt is made when the intended recipient is busy sending or receiving 
a message with another post, then the message is placed in a storage buffer. Similarly, if a 
message triggering event occurs while the post is engaged in communication, the new message 
is placed in a buffer. Attempts are made regularly to send the messages in the buffers as the 
assigned time slots occur. 

There are a fixed number of storage buffers available in each radio. If a message 
triggering event occurs when the buffers are all in use, the corresponding message is dropped. 

If a transmission attempt is made when the recipient is not busy, then with high 
probability the message will go through. There is a small probability that the message will not 
be completed, however, and the sender is unaware that the message is not sent. 

for 
If the message goes through successfully, then the sending and receiving radios are busy 

the  duration   of the  transmission. 
However, at random times interference 
events occur on the links between pairs 
of posts. If an interference event occurs 
during the time that a message is being 
transmitted, then the message goes into 
the storage buffer system for later 
retransmission. An interference event has 
no effect if the link on which it occurs is 
not in use at the instant of its occurrence. 

The system operates for a fixed 
period of time. At the end of this period, 
no more message triggering events occur, 
but transmissions continue until all 
buffers in each radio have been cleared. 

SIMPLE FOUR - RADIO MODEL 
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POSSIBLE MESSAGE OUTCOMES 
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Buffers Full When Event Occurs • Drop Message 

to a successful completion (figure). 

Possible    Outcomes    of   a 
Trigger Event 

When a triggering 
event occurs it is associated 
with a particular radio. If 
that radio is not busy, then in 
effect the corresponding 
message is composed and 
placed in an "immediate 
send" buffer for transmission 
when the next time slot 
comes up for the radio. At 
that time, an attempt is made 
to send the message. If the 
recipient is not busy, then the 
transmission is initiated and 
with a little luck goes through 

If the intended recipient is busy at the time the transmission is attempted, then the 
message is placed in a storage buffer for later transmission. With a certain low probability 
(nominal 2%) the transmission attempt will fail and the message be lost. 

Random interference events occur on each of the links. If such an event occurs while a 
transmission is underway, then the transmission is interrupted. The message is placed in a 
storage queue for later retransmission. The retransmission will start again at the beginning of 
the message, with no credit given for the part that was previously transmitted. 

If the radio is busy when the triggering event occurs, then the message is placed in the 
storage queue. Similarly, if the radio was not busy and the message was composed in the send 
buffer, but before the radio's time slot comes up the radio becomes busy by receiving a 
transmission from another radio, then the message is removed to the storage queue. Both these 
options are lumped in the fifth line of the figure. 

If a message is to be placed in the storage queue for any of the above reasons, but the 
queue buffers are all full, then the message is lost. The last two lines of the figure illustrate that 
this may happen whether or not the radio is busy. 

If a radio is not busy but has messages stored in its buffers, then as each of its assigned 
time slots comes up, it moves the message from the first storage buffer into the send buffer for 
the next attempt. All other messages are moved up in the queue. If the attempt is not successful, 
then the message goes back to the end of the queue. 
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Sample Timeline 

A sample timeline using the model is shown in the table. An interference event that 
occurs when a link is not in use is denoted "Interference link y," where y is the link number, 
while interference occurring during a transmission is denoted "Interrupt Mx," where x is the 
message number. As a standard case, the model is run with 4 radios and the following 

parameters: 

• Mean interarrival times of trigger events: 20 time units for each radio 
• Mean service time: 6.5 time units for each radio 
• Number of buffers: 4 in each radio 
• Probability of message loss: .02 
• Assigned time slot length: .1 time units for each radio 
• Mean interference interarrival time: 30 time units. 

Time Radio 1 Radio 2 Radio 3 Radio 4 

0.00 idle idle idle idle 

0.18 Interference link 2 Interference link 2 

0.75 Event 1 
0.80 Start transmit Ml Receive Ml 
2.29 Event 2 queued 
2.81 Event 3 queued 
4.08 Interference link 2 Interference link 2 

5.04 Interrupt Ml Interrupt Ml 

5.20 Start transmit Ml Receive Ml 

5.31 Event 4 queued 
6.39 Event 5 

6.60 Try M5 - busy 

8.35 Interference link 6 Interference link 6 

9.63 Event 6 

9.90 Receive M6 Start transmit M6 

11.52 Event 7 queued 

13.97 Event 8 queued 

18.48 Interrupt M6 Interrupt M6 

18.99 Interrupt Ml Interrupt Ml 
19.00 Receive M8 Start transmit M8 

19.58 Event 9 queued 
20.48 Interrupt M8 Interrupt M8 

20.50 Start transmit M2 Receive M2 

21.10 Receive M7 Start transmit M7 

21.98 Interrupt M2 Interrupt M2 

22.10 Start transmit M3 Receive M3 

22.94 Event 10 queued 
23.47 Event 11 dropped 
24.12 Interference link 1 Interference link 1 

25.75 Complete M7 Complete M7 

29.71 Complete M3 Complete M3 

29.80 Receive M5 Start transmit M5 

32.92 Complete M5 Complete M5 

33.00 Receive M8 Start transmit M8 

33.98 Interference link 1 Interference link 1 
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Output from the Model 

Responses for the model are the total number of messages formulated, the number 
dropped, the number lost, the number transmitted successfully, the average length of time from 
message trigger until transmission is completed successfully, the number of messages for which 
this time length is less than a specified speed of service threshold (set to 50 time units), and the 
excess time after the operational period ends until all messages are disposed. Derived responses 
are the proportion of total messages received successfully and the proportion that are received 
within the speed of service threshold. 

The model is typically run for several replications and the means and standard deviations 
of the responses tabulated. 

Results averaged over 20 replications of a 200 time unit period are as follows: 

• Total messages (triggering events) = 39.35 (±1.10) 
• Number dropped because of buffer saturation = 0.80 (±.21) 
• Number lost because transmission attempt failed =1.10 (±.25) 
• Number completed = 37.45  (±.97) 
• Number completed within 50 time units = 32.30 (±1.05) 
• Average completion time of those completed = 26.11 time units  (±2.07) 
• Average percent completed = 95.34% (±.76) 
• Average percent completed within 50 time units = 82.60%  (±2.50). 

In addition to the average value, the standard error of the mean is given for each response. The 
standard error of the mean is the standard deviation of the response from the 20 runs, divided 
by ypm. This measures the variability of the average from the 20 replications, and can be used 
to compare results from different cases. 

Some modeling details will be mentioned. The message triggering event process is 
Markov; that is, times between successive arrivals are independent and exponentially distributed. 
The mean interarrival time for each radio is specified as input. The interference event process 
is also Markov, with the same mean time between occurrences for each link. The message 
transmission lengths are Erlang distributed, with the shape parameter equal to 3, but with the 
means possibly different for each radio. 

Although the model was generally run with 4 radios, it is dimensioned for up to 49. The 
corresponding number of links between pairs of radios is 1176. 
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An Attempted Comparison and Synchronization 

The simulation was run a second time with the number of buffers increased from 4 to 5, 
to evaluate the improvement in the average percent completed. The result, however, shows that 
the percent completion decreased to 94.51 and the average number dropped increased to 1.25. 
How can increasing the number of buffers decrease performance? 

A closer examination of the results from the two cases shows that the first replication is 
identical, and the second (from which the timeline given on page 27 was extracted) is identical 
up until time 23.47, at which time message 11 is not dropped. After that time, radio 1 has an 
extra message cycling in its buffers as its time slots come up. Not until time 97.2 is the message 
sequence altered, when radio 1 sends a different message with an earlier completion time. 
Shortly thereafter, a difference in messages sent causes a conflict so that one less message 
initiation occurs, one less draw is made, and the arrival processes then start to diverge for all 
radios. Eventually a sequence of close event arrivals all for Radio 1 occurs, causing several 
messages to be dropped even with the larger number of buffers. Ultimately, 6 messages are 
dropped for this replicate, as opposed to the nominal case for which only message 11 is dropped. 

The simulation was rewritten so that the random number draws will remain synchronized. 
The sequence of calls to the random number generator is 

• Initialization: 
- first message trigger event time for each radio 
- first interference event time for each link 

• At message trigger event 
- next trigger event time for this radio 
- recipient for the message 
- length of the message 

• At message transmission event 
- draw against probability of message loss 

• At interference event 
- next interference event for this link. 

The synchronization is effected by introducing an array of seeds for the random number draws. 
There are four seeds associated with each radio, one for each different usage, and one with each 
link. At the start of each replication, the array is initialized with a separate random number 
generator, with its own control seed, that will always provide the same starting point independent 
of the input parameter values. The basic generator used is a standard published routine called 
UNIF2 in Appendix B and the initialization generator is called GEN_A. The resulting model 
may be called Syncsim and compared with Plainsim, the original. 
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Comparison of Svncsim with Plainsim 

Comparable results for the baseline case with the two simulations are in the table. Since 
the purpose of this example is to compare results with and without synchronization, these results 
were obtained by trying ten different seeds and using those providing the best match for these 
responses. The agreement between the nominal Plainsim and nominal Syncsim is therefore 
somewhat closer than what would be seen between randomly chosen samples. 

RESPONSE PLAINSIM SYNCSIM 

Number of messages 
Average time 
Completion ratio 
On-time ratio 

39.35 
26.11 
95.34% 
82.60% 

39.45 
25.75 
94.98% 
82.04% 

Of interest is what happens when the number of buffers is increase to 5 in Syncsim. The 
completion ratio increases from 94.98% to 96.42% and the average number dropped decreases 
from 1.50 to .75 messages, which follows intuition and common sense. Cases were run with 
each of the key input parameters increased and decreased from nominal, and all responses now 
vary in the expected direction. A good comparison between a nominal case and an excursion is 
provided by the differences in responses between each replication. For example, the completion 
percentages for the 4 versus 5 buffer case and their differences follow. 

PLAINSIM Completion Percentage SYNCSIM Completion Percentage 

Rep# 4 buffers 5 buffers difference 4 buffers 5 buffers difference 

1 95.12 95.12 0. 92.31 92.31 0. 
2 95.24 83.67 11.57 100.00 100.00 0. 
3 92.68 95.83 -3.15 97.56 97.56 0. 
4 97.22 97.30 -0.08 97.06 97.06 0. 
5 93.48 96.43 -2.95 97.22 97.22 0. 
6 100.00 93.88 6.12 91.67 91.67 0. 
7 100.00 95.35 4.65 100.00 100.00 0. 
8 87.18 91.89 -4.71 95.35 95.35 0. 
9 100.00 94.29 5.71 97.73 100.00 -2.27 

10 97.78 93.55 4.23 100.00 100.00 0. 
11 94.74 95.56 -0.82 90.00 92.50 -2.50 
12 100.00 100.00 0. 86.67 88.89 -2.22 
13 96.88 88.24 8.64 85.42 87.50 -2.08 
14 95.35 90.91 4.44 90.00 97.50 -7.50 
15 95.45 86.79 8.66 100.00 100.00 0. 
16 93.02 100.00 -6.98 97.56 97.56 0. 
17 97.06 100.00 -2.94 97.22 100.00 -2.78 
18 91.43 96.77 -5.34 91.11 95.56 -4.45 
19 92.68 97.14 -4.46 95.65 97.83 -2.18 
20 91.49 97.44 -5.95 97.14 100.00 -2.86 
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The Si2nificance of the Observed Improvement 

The variability of the differences is noticeably less using Syncsim than with Plainsim. 
The standard deviations of the differences in the table just given are 5.53 versus 2.00. This is 
a significant reduction in the standard deviation. Suppose that the primary purpose of the 
simulation runs is to measure the improvement in performance precisely by averaging over a 
(possibly) large number of replications. The standard error of the average from n replications 
is the standard deviation a divided by vTi. Therefore for Syncsim the estimated average 
difference is -1.442, with a standard error of .447. To obtain this same precision using Plainsim 
with a a of 5.53, requires that n be increased from 20 to 153. This is over IVi times as much 
simulating (the square of the ratio of the standard deviations). Synchronization has in this case 
effectively divided the overall running time by a factor of IVi. 

Similar comparisons were made for each of six input parameters at an increased and 
decreased level. These were the probability of making a connection, number of buffers, slot 
length, interference event arrival rate, average message length, and triggering event arrival rate. 
The responses average time, completion ratio, and on-time ratio were used (see table). In all 
thirty-six cases the standard deviations of the differences were less using Syncsim. The table also 
gives in the "Benefit" columns the square of the ratio, which measures the increase in sample size 
required for Plainsim to achieve the same precision as given by Syncsim. 

A further demonstration was made by employing a 36-run experiment design using all six 
of the key input parameters with the same three responses. A 28-term model was fit to the 
results. The residual standard deviations were found to be less using Syncsim. Moreover, the 
fitted models were more parsimonious and easier to interpret. 

A key element of the approach is the use of two different random number generators, one 
to supply the starting seeds for the other. A test was developed adapted from Rantest7. At least 
for this example, it appears to be more critical that the generator used to supply the seeds be of 
high quality. 

Plainsim Syncsi m Benefit 

Parameter Time Comp SoS Time Comp SoS Time Comp SoS 

P connect + 15.8 .071 .194 1.8 .011 .019 80 38 101 

P connect - 14.2 .060 .172 2.0 .015 .040 53 16 18 

Buffers + 12.0 .082 .177 4.1 .033 .044 8 6 17 

Buffers - 17.1 .055 .199 1.6 .020 .032 119 8 38 

Slot + 9.5 .047 .121 4.3 .020 .070 5 6 3 

Slot- 11.3 .050 .138 3.6 .027 .072 10 3 4 

Intrfer + 11.5 .046 .126 6.6 .030 .090 3 2 2 

Intrfer - 13.4 .063 .176 4.8 .037 .079 8 3 5 

Length + 14.3 .047 .180 3.4 .026 .078 18 3 5 

Length - 15.3 .073 .210 4.4 .023 .075 12 10 8 

Arrivals + 14.6 .065 .168 4.3 .019 .072 11 11 5 

Arrivals - 10.6 .044 .128 5.2 .028 .074 4 2 3 
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A Recipe for Synchronizing Random Numbers 

Synchronizing the random number draws is easy to do for any existing or new simulation, 
and it seems to be very beneficial in allowing comparisons to be made. It should be made a part 
of any simulation. The only exception is a simulation that always makes exactly the same 
random number draws by its design (which is effectively already synchronized). Here is how 
to do it. 

1) Identify all the random number draws and associate each with an entity and a purpose. 
For example, in SPM entities might be nets, radios, hostile jammers, and operational facilities; 
purposes for a radio might include scheduler delay, probability of frame synchronization, and 
probability of collision. 

2) Attempt to place random number calls in procedures before any branching, so that the 
same number of draws is made with each procedure call. A few wasted draws are of little 
concern. 

3) Replace all random number draws by a call to a new routine RANDOM that gives as 
output the random number and accepts as input indices I for entity type, J for entity number, and 
K for purpose of call. Variants are possible; for Syncsim only J and K are used, with K values 
of 1 to 4 used for message arrivals, message recipient, message length, and probability of failure 
for radios, and K of 5 used for links. 

4) Set up an array of seeds so that each UK combination has its own seed. This may be 
done with a single triply dimensioned array or with a combination of arrays; the latter is 
particularly useful if there are disparate numbers of different entity types. Syncsim is 
dimensioned for a total of 49 radios and uses a 4 x 49 array for radios and a separate singly 
dimensioned array of length 1176 for all possible links between pairs of radios. 

5) When called, routine RANDOM selects the appropriate seed array and seed, then uses 
it in a call to the actual generator. The new seed produced by the generator is returned to the 
seed array and the real number X returned to the caller. 

6) There remains the task of initially filling the seed arrays. This may be done 
conveniently by means of another new routine RANSET, which is called at the beginning of the 
simulation run and again at the beginning of each new replication if more than one sample is 
included in the case. This routine uses a single seed as a user supplied input. It then uses a 
second random number generator, independent of that used in step 5, to fill in the seed arrays. 

This procedure should be easy to implement for any simulation and give results that are 
easy to use and interpret. An ingenious alternative approach to step 4 that was developed by Jeff 
Niemuth is given in Appendix D. It uses a singly dimensioned array of seeds and an auxiliary 
doubly dimensioned array to accommodate differing numbers of entities of various types. 
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6. EXPERIMENT DESIGN FOR SIMULATION STUDIES 

Motivation for Experiment Design 

A Simulation model usually has many input variables, and there generally comes a time 
when the user wants to explore what happens as these are changed. Assume that a reference set 
of input parameter values has been established, perhaps by modeling a baseline concept. The 
next step is often to run sensitivity analyses, in which one variable at a time is changed from its 
nominal value. This step is useful in establishing which of the many variables are the most 
influential, and in screening out some variables that are of no further interest, either because they 
have no effect on system performance or their effect is undesirable and the baseline value is the 
only suitable value. 

A next logical step is to run further sensitivities, except that each variable that is still of 
interest is changed from nominal in the opposite direction than in the first set of sensitivity runs. 
Of course this only makes sense for variables that have a natural ordering and for which both a 
higher and lower value is meaningful for the simulation. 

The question then remains as to what happens as several or many variables are changed 
from their nominal values. If only two or three variables are still of interest, then it makes sense 
to run all further combinations of levels that have not as yet been run. In this framework, we 
are dealing with three levels for each variable: nominal, high, and low. With two variables there 
are nine combinations, of which the five with at least one variable at its nominal value have 
already been run. The picture is completed by running the four remaining cases in which both 
variables are at either high or low values. With three variables, there are 27 combinations of 
which 7 have been run. Running the remaining 20 is a lot of work, but is not out of the 
question.  With 4 or more variables, we need to look for an alternate approach. 

There are several features of experiments with simulation models that do not jibe with the 
standard theory and practice of experiment design, which has been developed for experiments in 
the physical world. A key one is the choice of a reasonably sized set of input variable 
combinations to use for running simulation cases. For example, there are few suitable published 
designs for moderate numbers of variables all of which appear at three levels. Also, the usual 
selection criteria for finding designs depend on the error structure and on the terms appearing in 
the models. 

Two areas within the general field of statistical experiment design are particularly 
relevant. Factorial design deals with the situation in which the independent variables are 
restricted to discrete levels, usually two or three. The purpose of factorial design is to obtain 
efficient estimation of parameters that are assumed to describe the response of the system at any 
combination of levels. The area of response surface design deals with a response that is an 
unknown function of several continuous variables. The value of the response may be estimated 
by running experiments at any combination of values within some region of interest. The 
purpose is often to find combinations of the independent variables that optimize the response. 
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Models to be Used 

We will assume that the simulation model being used has some random components 
implemented by means of a pseudo-random number generator. For any combination of values 
of the input variables, the simulation gives a response that is subject to error because of the 
randomness. Presumably we could eliminate the random error by making a very large number 
of iterations, say as many as the cycle length of the random number generator, and averaging. 
In practice we will make a suitable number of iterations to drive the random error of the average 
down to a small value. 

We will restrict attention to the situation in which the input variables are all numerical 
and are restricted to just three values. The full design obtained by running an experiment at 
every possible combination of levels is called the full factorial. The response for any set of input 
variables can be expressed in terms of a model that contains a grand mean, main effects, and 
interactions. The grand mean is the average response for all points of the full factorial. The 
main effects of any single input variable are the linear and quadratic components of the responses 
at the three levels of the input variable, averaged over all combinations of levels of all the 
remaining variables. The two-variable interactions are components of the responses at the values 
of two of the variables averaged over all combinations of the remaining variables. The two- 
variable interactions may be resolved into four components: linear-by-linear, two linear-by- 
quadratic, and quadratic-by-quadratic. Higher order interactions involving more than two 
variables may be defined analogously. 

We will adopt as a working hypothesis that the response may be approximated adequately 
by just a subset of the terms. Specifically, we will assume that the subset contains just the grand 
mean, linear and quadratic main effects for each input variable, and linear-by-linear interactions 
between each pair of input variables. If this is the case, then it should be possible to calculate 
values for the operative terms from just a subset of the full factorial. Intuitively we expect that 
some subsets would be more suitable than others. 

The response at any combination of input variables can be expressed as a linear 
combination of the unknown effect and interaction parameters plus error. In vector and matrix 
notation, let Y be a column vector of N responses from the experiment. Let ß be the vector 
of k unknown parameters and let e be the  N-component vector of errors. Then 

Y=  Xß + e, 

where the coefficient matrix X, called the design matrix, is used to express the dependence of 
the responses on the parameters. In the usual case in which k is less than N and the matrix 
X'X is nonsingular, the least-squares estimate of ß is given by 

ß = (X'X)"1 X'Y. 

If the components of e are independent and all have the same variance a2, then the covariance 
matrix of ß  is given by (X'X)-1 o2. 
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Designs for Simulation Studies 

We have envisioned a simulation study involving a baseline case, followed by sensitivity 
runs each with one variable increased and then decreased, followed by more runs with several 
variables changed jointly. The experiment design for this sequence of cases 
would then have several features: 

• It contains as a subset the points of the sensitivity studies 
• It allows estimation of all main effects and all linear-by-linear interaction terms 
• It has a moderate number of factors. 

The experiment design literature does not seem to offer suitable designs sharing these special 
features. Therefore designs were developed for 3 to 10 factors, and are given in Appendix E. 
A summary of the designs (including the two-factor full factorial) appears below. 

# factors 2 3 4 5 6 7 8 9 10 

# parameters 6 10 15 21 28 36 45 55 66 

# runs 9 15 21 27 35 44 54 65 77 

Efficiency % 100 96 82 81 70 59 53 46 41 

The designs were obtained and evaluated using an existing Experiment Design Evaluator 
written by the author. This interactive routine evaluates a given design, then gives the user an 
evaluation of which points might best be added to the design or deleted from the design. 
Iterative use of this exchange algorithm can often lead to improved designs. The criterion for 
improvement is related to the average statistical variation of a fitted response, where the average 
is taken over all points of the full factorial. This can be expressed in terms of the inverse of the 
cross-product matrix X'X as defined above. The criterion can also be considered in terms of 
how a subset design compares with the full factorial. The latter is fully efficient, but at the 
expense of being an extremely large design if the number of factors is not small. The 
efficiencies in this sense for the subset designs are included in the table. They are quite high 
considering the small sizes of the subset designs relative to the full factorial. 
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Application of Experiment Design to a Simulation 

The Simulation chosen for this experiment models an assistance telephone line for users 
of a widely disseminated computer software product. Customers call in with questions or 
problems for which they need expert assistance. Up to 5 service representatives are used to field 
their inquiries, but on any given day, up to two servers may be absent. The probability is .15 
that exactly one server will be out, and .05 that exactly two will be out. 

If all servers present are busy when a call arrives, the caller is put on hold. At this time 
a caller may decide that the wait isn't worth it and hang up. This balk probability depends only 
on the length of the queue. The balk probability is zero for a queue size of from 1 to 5, then 
increases linearly to be 1 at 10. Once a caller has decided to wait, he or she will continue to 
hold until served. 

The phone line is configured with 10 hold positions. If a call arrives when these ten slots 
are already taken, it receives a busy signal and the caller must try again later. The line opens 
in the morning at 8, and runs all day until 5 in the afternoon. Calls arriving before 8 are put in 
the hold queue. Any calls that are on hold at 5 are retained and will eventually be answered by 
a server. 

The arrival of calls will vary throughout the day. The arrivals are modeled as having 
independent exponential interarrival times with mean values as a function of time of day: 2.79 
between 9 and 11, 2.79 between 1:20 and 4:20, and 6.44 at other times between 7:50 and 5. 
Service times will be independent of each other, of the time of day, and of how many callers are 
waiting. They will probably have a long-tailed distribution; this is assumed to be Erlang with 
parameter 2 and with mean service time of 9.5 minutes. 

There are four responses of the system that are of interest for each day simulated. These 
are: 1) The number of customers served, which is a function of the arrival distribution and of the 
number of balks. 2) Maximum queue length that develops. 3) Utilization factor for the servers, 
expressed as the percentage of the time' from 8 to 5 that the servers present are on the phone. 
4) Average wait for service, expressed as total waiting time divided by the number of customers 
served (whether they actually had 
to wait or not). 

This example is based on a 
slightly simpler example given by 
Bratley [1983]. Their context is 
arrival of customers at a bank to be 
served by tellers. Fortran code, 
again adapted from that provided 
by Bratley et al, was used to model 
the service phone line system. 

CUSTOMER SERVICE PHONE LINE 
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ofphwellrw 
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The Experiment 

The experiment involved seven input variables whose levels are in the table below. The 
design consisted of 44 points out of the 37 = 2187 of the full factorial (2%). Simulations were 
run for 100 days each. The random number strings were synchronized so that the same random 
draws were made on each day no matter what the values of the input variables. The four 
responses were averaged over the 100 days. 

Factor Low Level Nominal High Level 

A. Queue length without balk 3 5 7 

B. Prob of absences 1, 
or 2 

.10 

.00 
.15 
.05 

.20 

.10 

C. Opening time 7:40 8:00 8:20 

D. Number of servers 4 5 6 

E. Mean service time 8.5 9.5 10.5 

F. Closing time 4:40 5:00 5:20 

G. Mean interarrival times 6.12 
2.65 

6.44 
2.79 

6.76 
2.93 

The design points and values of the four responses are given in Appendix F, as are the 
estimated values of the parameters. Almost all of the linear main effects are appreciable, as is 
the quadratic effect of the number of servers. Ten of the 21 interaction terms also have 
appreciable influence on the responses. The fitted responses using the full 36-term model 
approximate the original observations quite well. 

An example of one of the models resulting from this analysis, for total customers, is given 
here.  All terms that are smaller than .15 (rounding to .0 or .1) have been omitted. 

Effects: 
Mean 144.9 
A 1.1 
B -1.1 
D 2.6 
D quadratic -.6 
E -1.3 
F 3.2 
G -6.8 

Interactions 
AB .3 
AD -.8 
AE .5 
AF -.5 
BD 1.1 
BE -.5 
BG .3 
DE 1.2 
DG -.6 
EG      .4 
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A Confirmatory Experiment 

Point 

0002111 
0021111 
0100010 
0101000 
0101010 
0112100 
0121111 
0221011 
0222122 
1002101 
1002122 
1011220 
1012110 
1021020 
1122121 
1212112 
2020112 
2120022 
2120200 
2221122 

Predicted responses 

147.03 3.12 42.18 0.19 
145.72 5.52 53.92 1.27 
148.98 5.75 61.59 2.92 
150.45 4.25 50.73 0.78 
153.57 4.18 49.94 0.62 
150.58 4.12 48.49 0.49 
144.40 5.67 56.55 1.86 
145.19 5.69 53.22 1.73 
142.72 5.43 45.88 1.33 
144.51 3.44 43.03 0.27 
142.58 2.74 39.39 -0.15 
156.64 5.87 59.62 1.97 
155.21 4.35 46.15 0.42 
158.75 5.92 50.42 0.80 
150.08 5.84 46.75 1.13 
140.17 4.05 44.98 0.49 
138.50 7.49 64.60 4.78 
141.60 7.38 61.06 4.84 
144.36 9.43 81.65 8.80 
142.67 6.99 56.39 3.64 

Observed responses 

146.84 
145.55 
149.12 
150.28 
153.50 
151.03 
144.66 
145.04 
141.88 
143.85 
142.88 
157.07 
155.08 
157.81 
150.21 
132.53 
141.32 
143.58 
142.36 
139.84 

3.07 
5.49 
5.79 
4.33 
4.33 
4.00 
5.57 
5.52 
5.09 
3.24 
1.64 
6.11 
3.35 
6.08 
5.80 
9.88 
7.12 
9.70 
6.60 
3.84 

42.02 
54.02 
61.89 
50.72 
49.95 
48.61 
56.66 
52.91 
45.44 
42.72 
33.78 
59.75 
39.35 
50.44 
46.55 
82.66 
61.18 
81.88 
56.06 
44.80 

0.27 
1.53 
2.91 
1.00 
0.98 
0.67 
1.97 
1.79 
1.09 
0.31 
0.07 
2.13 
0.25 
1.40 
1.16 

12.01 
4.00 

10.13 
2.72 
0.63 

That the fitted model works well for the original design points is not surprising. The real 
question is whether the model works just as well for the 98% of the full factorial that is not part 
of the experiment. A test protocol was set up and followed exactly. Twenty points of the full 
fac onal that were not contained in the original experiment were selected by using a published 
table of random numbers. Predictions were made using the model and simulations were run to 
get actual values of the four responses. The results are in the table above. 

A meaningful comparison of the two sets of results may be obtained from the residual 
error of the responses from the first experiment, each having 8 degrees of freedom in the 
statistical sense, with the root mean square differences of predicted and observed from the 
confirmatory experiment, with 20 degrees of freedom. These are given in the table below 

Response Customers Max Queue Utilization Ave Wait 
Residual (original experiment) .545 .239 .256 .192 
Prediction - Actual 

===== ■  

.457 .200 .214 .494 

The conclusion is that the experiment design gave very good results for the first three 
responses and pretty good results for the fourth. The reason the fourth response is not better is 
hat its vanabihty increases with its value. The logarithm of waiting time could be used instead 

to achieve more stable results. 
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A Scenario for Implementation of Experiment Design 

The use of experiment design as illustrated appears to enhance the use of simulation 
models. In particular, it gives the analyst a good understanding of the behavior of the simulation 
model over a great number of combinations of inputs without actually running all the cases. We 
will explore briefly how it might be implemented in a semi-automated fashion. 

Suppose that runs of a simulation model are set up and initiated by means of an 
interactive interface. The user may be presented with screens that request values for any key 
control parameters, and menus of sets of input parameters by means of which the user can 
establish default values, or change values for a particular run. Such a system could be extended 
to treat the interface with the experiment design. The user would be asked to specify which input 
variables are to be studied in the experiment and the levels for each. Output variables of primary 
interest for interpreting the results would also be specified. The user might also be given options 
as to how the results of the experiment are to be presented, such as raw estimates of effects and 
interactions, fitted value tables, plots, or estimated maxima. 

The system would then take over and set up a series of simulation runs according to an 
experiment design established internally. The random number generation scheme for the basic 
simulation model would have been set up so that all random number draws are synchronized for 
each Monte Carlo replication of the model. In the phone help line simulation different strings 
are used for determining the number of servers absent, customer arrivals, queue balks, and service 
times. Random number synchronization is required for making meaningful comparisons between 
runs of the designed experiment. 

Because many of the input parameter values are the same from one point to another in 
the experiment design, many of the same computations are done repetitively from one case to 
another. It should be possible to structure the simulation to take advantage of this fact. If an 
input variable is used only in a function subroutine, for example, then the subroutine could be 
modified to store its computed output value for each input used. At each call it would first check 
to see if it had been already done the requested computation, and if so just feed back the stored 
value. Restriction of the design to the factorial structure may mean that very few different values 
are actually used. It should be noted that use of an object-oriented approach to the simulation 
development, or at least a modular structure, would facilitate this saving. 
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7. OTHER GENERAL APPROACHES FOR INCREASED EFFECTIVENESS 

The original thrust of the current effort was to examine approaches that might be 
generally applicable across a wide variety of simulations. It soon became apparent, however that 
the techniques under examination could only be made effective by introducing approximations 
or decreases in fidelity. The work was therefore abandoned in favor of more promising efforts 
borne of the techniques considered might still be useful for other types of simulations. 

Scaling 

The idea of scaling is used throughout scientific investigation. It is feasible to observe 
a small number of entities and their interactions by a single scientific investigator. The scientist 
then tries to generalize to systems consisting of larger numbers of entities. If interactions are 
tew, then the seal.ng approach works: a dairy with 10 times as many cows will produce 10 times 
as much milk Scaling is hopeless for some applications because of the complexity of the 
interactions, the two-body gravitation theory being an example. 

Scaling was tried with the phone-line model described on page 36. The size of the model 
was increased by scaling up from 3 to 30 customer service representatives, and by increasing the 
number of cus omer arrivals correspondingly, in this case by dividing the interarrival rate by 10. 
Not surprisingly, the number of customers served per day did scale well.  The average waiting 

^Th^KnOL     ■ ger m°del 3 SerVer W3S much more ,ikely to become liable quickly 
so that the waiting times were shorter and their distribution showed less spread.   No genera 
conclusions were reached, except that scaling is a complex issue. 

Inverse Validation 

realitv S^Ulati°n Va"dation ^thodology is used to determine how well a simulation matches 

tLÄ WC f eXTg SimU,ati0n that h3S been va,idated but that we would like 
themode^i Jhteh WH6 m,g, ?Se ?e reSU,tS °f thC Validati0n process to detemine what Part» of the model might be degraded without significant sacrifice of fidelity. 

«v«il»w?f idelhlre 1S.t0 USC a decomP°sition of the model into submodels for which data are 

ZtaJae^t lu $yT 3nd thC SimUlati°n-   In SUCh 3 SitUation' the validati- of the overall model might be based on metrics that were weighted sums of metrics for submodels   As 
a system is developed, test data are often obtained for components and subsystems longbefore 

oTsubt-t0t makf6 I"' tCStS °n thC Wh0,e SyStCm- The S'Stem model ^ then befpeeded up by substituting faster running submodels for those that are slow running but of greater 

sZcte thethan-need
f
ed

h
f0r thC °Vera11 SimUlati°n-   The inverse validation^nciplewoud structure the choice of where to compromise fidelity. 

When an engineering simulation model is developed in parallel with the system 
development, it is common to have submodels of varying degrees of fidelity.   Rather than 

XTfidehtv   I1 y °fti
h0Se tHat 1 hjgh'thC Spirk °f enginee^SSimu,ati°^ to ,e-them 

W'mighl be^r tyPCS °f SimU,ati°nS' SUCh " SyStCm effeCtiveneSS m0dels' ^ 
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Staged Aggregation 

A communication system simulation is characterized by having a large number of entities 
of the same or similar types that are all linked together. A simple example is a system consisting 
of many terminals that send messages to each other. If the system is to be simulated, the 
straightforward approach is to simulate each terminal and the individual messages between them. 
As the system grows in size, the size and corresponding run times of a simulation grows in a 
combinatorial fashion. 

Aggregation may be applied to combine entities into groups of small size. The result 
might now be considered a higher-order building block. Then further growth is modeled by 
linking these next order building blocks, and the process repeated for a few stages. Thus, for 
example, rather than modeling a system of 1000 terminals, the system is represented as 10 
supersets of 10 groups of 10 terminals. 

Continuing this reasoning, the system 
consists of a small subsystem, operating in 
parallel and interacting with many replicas of 
itself. The corresponding modeling approach is 
to represent the subsystem in terms of its own 
internal transactions, together with interactions 
with its replicas. Thus, for the networked 
terminal model the subsystem model would 
explicitly account for messages sent and 
received within itself, the messages sent to 
other replica subsystems, and the messages 
from other replica subsystems. 

As part of this contract, some work was 
done on a network model to test out this idea. 
One node in a network initiates a message that 
it sends to its neighbors, who relay the message 
on. Fortran simulation models were written to 
compare levels of aggregation up to the third 
level (figure), but the complexity of the 
aggregated models seemed to increase faster 
than the potential savings and most results were 
negative. The work done is summarized in 
Appendix G. 

STAGED AGGREGATION 

LLLL 

Nodes Treated Individually 

First-Level Grouping 

t t 

1     I * l"*! I 1 

» 1 

1     1 1 1 — 1 1 1 

, 

Second-Level Grouping 
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8. RECOMMENDATIONS AND IMPLEMENTATION PLAN 

Random Number Synchronization 

It is recommended that a random number synchronization scheme be implemented for 
CECOM simulation models, including SPM in particular. This is easy to do and can be done 
by those who routinely maintain the models following the procedure given on page 32. 

With a synchronization scheme implemented as indicated, one seed controls the generator 
that produces the seeds for the generator actually used during the simulations. It is recommended 
that that seed be a user controlled input parameter. If a specific seed is to be used in the current 
SPM implementation, code must be recompiled. 

If synchronization is not implemented, then separate runs should be made with different 
seeds. This is to avoid the situation in which runs are essentially the same for awhile, then 
diverge after random number synchronization is lost. Meaningless comparisons might result as 
discussed on page 24. The technique used in SPM of setting the seed by the low-order bits of 
the system clock is effective and should be retained. 

If synchronization is not implemented, then the option of using statistically generated 
input message generation should not be used for cases to be compared to each other. The input 
should be generated offline, using the statistical technique if desired. The resulting message set 
should then be used as a scripted input for the actual simulation cases. This is because of the 
strong dependence of a communications simulation on the input traffic. In fact, for many such 
simulations most of the benefit of the random number synchronization technique might be 
achieved by using scripted inputs. 

Other Recommendations 

An automatic timing system should be introduced into simulations. This can be done by 
calling the system clock when each major procedure is initiated, again at the end, and cumulating 
the time increments so obtained. The total time in each procedure should then be printed as part 
of the simulation output. Timing data can be refined for those procedures that use the most time. 
The resulting data will be useful in directing future efforts at optimizing simulation run time. 

Although the current random number generator in SPM is judged to be adequate, it is not 
the best generator available.   Its replacement with a proven generator would add to credibility 
The generator called GEN_H or GEN_A in Appendix B might be good choices here, subject to 
further testing.   The best generator studied, GEN_K, is more difficult to initialize because it 
stores intermediate values internally, and incidentally requires more computer time. 

An automated system to set up simulation cases following a statistical experiment design 
should be pursued. The usefulness of this step is contingent on having a random number 
synchronization scheme in place. Details need to be worked out including what the experiment 
designs should be and what the user interface should look like. A better generator is strongly 
suggested as an adjunct to an automated experiment design capability. 
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Implementation Plan 

It is frequently suggested that a follow-on contract would be the best vehicle for 
implementing recommendations arrived at in a study. In this case, however, most of the 
implementation can be done by those responsible for the model and those performing routine 
model maintenance. It is assumed that SPM is the intended target for implementation, but other 
models could be used just as well. 

First, two interim operating procedures should be established applicable to production runs 
with the SPM. A production run is any that will contribute to analyses or that will be used as 
the basis for decisions. Different cases should use different random number seeds. Generation 
of the input message scenario should be done offline and the result used as a scripted input that 
is archived. Even if no comparisons are contemplated with a particular case, the script is 
available should a later comparison need to be made. 

Second, synchronization of the random number draws should be implemented. The first 
step is to identify all random number draws and associate with each an entity type, entity 
number, and purpose. In performing this association, it is important to separate cases in which 
different numbers of draws might be made depending on different input parameters or on 
different conditions. If the same number of draws will always be made, then purposes may be 
lumped together. 

The actual coding phase follows the procedure outlined on page 32. This involves a new 
random number provider that accepts indices, an array of seeds, an initialization procedure, and 
two independent random number generators. All calls to the existing random number generator 
(in any form) are replaced by calls to the new random number provider. For SPM this will 
involve replacing the calls to Uniform, Expon, Texpon, Normal, and Tnormal with new 
equivalents. Random number draws should be moved back before IF structures so that the same 
number of draws will always be made. 

Testing would include tests that the procedure is implemented properly and also regression 
testing in which inputs are set up to match old cases that have been studied in the past. Tests 
would also be made with parameters changed to verify that close comparisons are now possible. 

Once synchronization is in place, the single seed that drives the random number generator 
that fills the seed array for the other generator should be made part of the user input, and no 
longer generated via the system clock. 

As a separate effort, timing instrumentation should be added to the code so that in the 
future efforts to increase running speed can be concentrated on the routines that use the most 
time. 

A facility for automating the running of statistical experiment designs appears to offer 
potential benefits. Further study of implementation details, particularly the analyst interface, and 
the benefits using it are required. 
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APPENDIX A - VALIDATION METRIC ROUTINES 

Validation of a simulation model is often based on a comparison between data from a test 
of the real system and corresponding data from the simulation. Metrics that express the degree 
of agreement have been developed and were implemented in the form of computer routines for 
use in validating SPM.  Details of the theory, routines, and testing are given in this appendix. 

A Metric for Binomial Data 

Statistical procedures are available for testing hypotheses about whether two binomial 
proportions are equal, or for establishing confidence intervals on single binomial proportions. 
Methods do not seem to be readily available, however, for determining the confidence with which 
two proportions lie within a specified interval. A procedure was developed for this purpose. 

If the unknown probability of success on any one trial is viewed as having a probability 
distribution which is uniform between zero and one before data are obtained, then after observing 
K successes in N trials, the parameter p has a beta distribution. Specifically, the posterior 
probability that p  is less than any value x between 0 and 1 is given by 

Pr{p < x} = (N + 1) ( £ ) f tK (l-t)N"K dt. 
o 

The figures given on page 15 show the shape of the probability density for representative values 
of N and K. In particular, for small N the density varies slowly and is significantly above 
zero for much of its width. For large N, however, the density is extremely peaked, but has 
negligible values except near the peak. 

Using this approach, the probability that two binomial proportions pt and p2 are within 
±d of each other can be calculated from a convolution of two beta distributions. This can be 
expressed symbolically as Pr{pt = y} x Pr{y-d < p2 < y+d}, integrated over all possible values 
of y. Evaluation of this expression involves an outer integration from 0 to 1 of the density of 
pt, obtained from the above beta expression using Nt and Klt and an inner integration between 
y-d and  y+d  of the beta density using N2  and  K2. 

The numerical evaluation of this expression over wide ranges of the five parameters is 
challenging. The integrals are replaced by summations with finite step sizes used for the 
infinitesimals dy and dt. The step sizes used must be small enough to give satisfactory 
accuracy, but not so small as to give unacceptably large computation times. If N is small, a 
fairly large integration step size will give accurate results. If N is large, however, the density 
is very peaked and a small step must be used. On the other hand, the density is negligible over 
part of the range.  In any case, the densities are unimodal. 

These features have been taken advantage of in several ways: 

44 



• If the density in the outer integral is so small that the resulting term will be 
negligible, then the inner integration is skipped. 

• If the contribution of the current term of the outer integrations is a small 
fraction  Et of the total already achieved, then the process is terminated. 

• If the contribution of the current term to the outer integration is a small fraction 
e2 (larger than ej of the total, then the integration step size for the inner integral 
is increased by multiplying by 2, up to a limit of 26. 

• The direction of integration is controlled so that the peak of the density is 
treated first and the long tail last. 

A second problem is the evaluation of the binomial coefficients for N things taken K 
at a time, which is equal to N! / K! (N-K)!. If N is large then this expression will cause 
computational overflow except when K is close to N or 0. The approach used is to make a 
preliminary check to see if the expression will be large, and if so, then use an alternative 
computation based on the Gaussian approximation to the binomial. The Gaussian approximation 
does not involve explicit integration, and is very fast. 

A Fortran routine using these features, called BETALIM, was sent to John Wray of 
AMSAA for his evaluation. The basic integration step size was set to .0001. On a 486 computer 
(at 33MHz) it took 44 seconds to solve 10, 9, 10, 9, .01, but only a couple of seconds to solve 
200, 200, 200, 200, .01. The accuracy of the first seems to be about .0002, but of the second 
only .01. If the step size is decreased to .00001, the accuracy is better but the times are 
increased by a factor of about 60. 

A further problem found by Wray was that the program stopped with an exponentiation 
error when K was equal to N. This is probably due to a compiler difference in the treatment 
of 0° when evaluating the density. 

A second version, called BETALIM2, was created and also sent for evaluation. It treats 
the 0° case specially, uses a variable step size depending on the larger value of N, and uses 
the more accurate Simpson's rule for the inner integration rather than the trapezoidal rule. The 
technical control parameters were tuned to attempt to give 3-place accuracy to the result over 
wide ranges of the inputs. A test case was constructed with 13 sets of inputs, based on a sample 
data set provided by Wray. NL and N2 were equal, ranging from 116 to 2190, Kt and K2 

were also equal, ranging from Nt down to Nt - 2, and the indifference interval d was .05. 
This test case took 22 minutes and 34 seconds on the 486 computer. The indifference interval 
of .05 is large (all the computed probability levels are essentially one), and smaller values would 
take less time. 

Further examination of the large-sample approximations used is in order. The test made 
is based on an approximation to the Stirling approximation to the factorials in the binomial 
coefficient; specifically, the quantity TEST given by 
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TEST = NlnN-KlnK- (N-K) In (N-K) 

is compared with a threshold value, currently set to 50. For values of N less than 73 this 
results in the exact formulas being used. For larger values of N the region for which the 
approximations kick in is given by central values of K: 

N = 75 
N = 80 
N = 100 
N = 200 
N = 10,000 

K between 30 and 45 
K between 26 and 54 
K between 20 and 80 
K between 14 and 186 
K between 6 and 9994. 

It should be noted that the region is a function of both  N  and   K, and not just applied when 
N is large. 

A further refinement, BETALIM3, incorporated separate calculation of step sizes for the 
two integrations, and more accurate large-sample approximations. Unfortunately, it proved to 
have some numerical problems, so it was withdrawn from consideration in favor of BETALIM2. 

An accuracy statement is given by Mood [1950] for the Gaussian approximation to that 
of the binomial proportion. The statement is made that the error is less than .15/V Npq 
(where p is the true underlying probability of success and q is 1 - p), provided that Npq 
is greater than 25. Although this sounds accurate, it really isn't. The values of N p q at the 
border between where the exact formula or approximation is used range from around 18 at 
N = 75 down to HVi for an N of 300, on down to 6 for N = 10,000. A check of values 
chosen along the boundary in such a way that the first sample would use the integration and the 
second the approximation was made using both BETALIM2 and BETALIM3. The results are 
in the following table, rounded to 4 places from the original output. 

Ni Ki N2 K2 d BETALIM2 BETALIM3 Difference 

73 49 73 41 .02 .0806 .0803 .0003 

74 49 74 73 .02 .1208 .1214 -.0006 

75 49 75 46 .02 .1783 .1808 -.0026 

80 59 80 54 .02 .1515 .1543 -.0029 

130 119 130 113 .02 .2020 .2092 -.0073 

200 191 200 186 .02 .3768 .3941 -.0172 

300 295 300 288 .02 .3997 .4170 -.0173 

This study is too limited to be definitive, but gives an indication of possible accuracy. 

46 



A Metric for Delay Time Data 

Because the message delay time data are continuously variable rather than restricted to 
two values, a different processing procedure was required. Several different formulations were 
tried for judging whether a particular arrangement of X's and Y's is more extreme than the 
actual one observed. 

The original approach developed under an earlier contract was intended for the case in 
which only a few observations were available from the real system. The procedure is based on 
the assumption that the two populations have the same distribution except for a location 
parameter. First we assume that there are two observations available from the real system and 
any practical number from the simulation. 

Let X„ X2, ... , Xm be an ordered sample of results for a single response from the 
simulation, where m is large; let Yt, Y2 be an ordered sample of size 2 from the real system. 
Assume that the random variable Z = Y + 9 has the same distribution as the X's. Then all 
possible permutations of the m + 2 variables consisting of the X's and Z's are equally likely, 
each with probability 1 / B(m+2,2), where B(n,r) is the notation for the binomial coefficient 
of n things taken r at a time.  By counting arrangements we find 

Prob{Z! < XJ = (m-i+2) / B(m+2,2),  and  Prob{Z2 < X} = i / B(m+2,2). 

These can be used to make confidence statements about  6  of the form  Prob{8 < X; - Yj}. 

If the indifference zone on 6 is ± d, then the set of differences is searched to find 
values of i and j for which - d s X( - Yj, and for which X-, - Yj s + d. The probabilities 
are evaluated from the above formulas, and the difference taken to bound the confidence with 
which 8  lies between - d  and + d. The choices are made to maximize this difference. 

This original formulation had the disadvantage that if the roles of X and Y are 
reversed, a different answer is obtained. A second problem was that the answer also changed 
if all data were subtracted from 100, but an adjustment was formulated that corrected this 
problem. 

An alternative formulation considers counts of all possible arrangements for which all the 
Y ranks are less than or equal to those observed. This formulation does have symmetry if the 
roles of X and Y are interchanged, but presents a more challenging counting problem. An 
innovative recursive approach was formulated, but is an alternating summation of terms of 
alternating sign. The numerical errors inherent in this approach prevent correct computation for 
sample sizes  n greater than about 15 or 20. 

The approach finally selected uses the Mann-Whitney U statistic, which is a count of the 
number of instances in which a member of the second sample is less than a member of the first. 
The value of U can range from 0 if all the observations in the second sample are greater than 
any in the first, to Nt x N2 if all are less than any in the first. If two samples are very 
different, then  U will have a value close to one of these extremes.  If they are the same, then 
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U will probably have a central value. If a sample of Nt X's is really from the same population 
as a second sample of N2 Y's, then if all the Nt + N2 observations are sorted, then any 
particular pattern of X's and Y's is equally likely to occur. The probability distribution of 
U in this case can be computed from a recursion relationship giving the number of possible 
arrangements of Nt X values and N2 Y values that give the same value for U. Assume for 
definiteness that N2 s NL. If N2 = 1, then there is just one arrangement of the N, X values 
and 1 Y value with each of the possible values of U from 0 to Nv Let the notation MW(u; 
N1? N^ be the number of arrangements that give the value u for the statistic U. Then the 
recursion is 

MW(u; N„ NJ = MW(u; N,-l, N2) + MW(u-N,; N„ N2-l), 

where  MW(u; N„ NJ is interpreted to be 0 if u < 0 or if 1^  or  N2  is less than or equal to 

For large values of Nt and N2 a Gaussian approximation is available. This is based 
on the asymptotic distribution, but is considered to be "reasonably" accurate for equal sample 
sizes as small as 6. 

The derivation thus far assumes that the measured values are from a continuous 
distribution, so that ties do not occur. In practice, values are only recorded to some number of 
significant digits, and ties may occur. The statistic U may be modified so that each time a Y 
is less than an X, 2 points are scored, and if a Y is tied with an X, 1 point is scored. With 
this formulation, U may range from a minimum value which is again 0 to a maximum which 
is  2 Nt N2. 

To form a metric giving the confidence that two samples represent populations that are 
within an indifference ± d of each other in location parameter, the U statistic is computed 
twice using the second sample values with d added and subtracted. The values of U are 
compared with the percentage points of its distribution to obtain values that are differenced to 
form the final metric. 

A Fortran routine called METRIC7 was developed implementing this procedure and sent 
to AMSAA for evaluation. Only the large-sample approximation was implemented for the initial 
delivery.      Another  version,   METRIC8,   was   developed   that   improves   the   large-scale 
approximation slightly, but more importantly adds the exact computation for cases in which both 
sample sizes are less than 20.  This routine works by building a table of the exact distribution 
which is referenced for particular values of U.  Attempts were made to develop a version that 
would use the recursion relationships to obtain distribution values as they are needed.    If 
successful, this approach could have covered the cases when only one sample size is less than 
20. The implementation involved making a procedure call for each term in the recursion, so that 
a deeper and deeper stack of calls was made as the evaluation proceeded.  The attempts failed 
to achieve results in reasonable amounts of computer time except for small sample sizes, for 
which METRIC8 could be used. Therefore the approach was abandoned. The case in which'one 
sample size is less than and one greater than 20 occurs rarely if at all for the EPLRS data, so 
METRIC8 was used for the data reduction for the VV&A effort. 
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APPENDIX B - RANDOM NUMBER GENERATOR TESTS 

The Tests 

A battery of tests for random number generators was constructed as follows: 

• Rantest - Inspection. Prints out the first three uniform draws and corresponding seeds 
for the generator under test. 

• Rantest2 - Cycle Length. Makes up to 30,000 draws and checks each successive seed 
value against a stored list of the last 20,000 seed values.  Impractical to use. 

• Rantest3 - Pair Uniformity. Draws 20,000 pairs and sorts them into a 64 x 64 grid, 
then makes chi-square test for uniformity. 

• Rantest4 - Gaps. Tests distribution of 7000 gaps of length up to 70 successive draws, 
where the gap intervals are 0.0 to 0.1, .15 to .25, .45 to .55, .75 to .85, and .9 to 1.0. 

• Rantest5 - Permutations. Draws 5000 sets of 6 numbers and classifies which of 720 
permutations their ordering falls into. 

• Rantestö - Runs. Classifies 40,000 runs of increasing size of length up to 8; that is , 
if X( < X2 < X3 > X4, then the run is of length 3. 

• Rantest7 - Overlapping Triples. Sorts 30,000 numbers (in circular string) by which bin 
of an 8 x 8 x 8 grid each successive triplet falls into (a Marsaglia 'stringent' test). 

Fortran listings of tests 3 through 7 are given later in this Appendix. 

The Generators 

The tests were applied to a set of 14 random number generators, for which listings are 
also given later. These are: 

• UNIF - Park & Miller generator as given by Kruger [1990]. 
• UNIF2 - Portable generator given by Bratley [1983]. 
• GEN_A - This is a portable generator written by Robert Guy (currently with Kaman 
Sciences Corporation in Colorado Springs) to emulate the generator RAN used in the 
Fortran library of the VAX 11/780 (called RANX by Guy). 
• GEN_B - Full precision implementation of a linear congruential generator (LCG) with 
a = 3141592653 and c = 2718281829, given as Generator B by Knuth [1969, p 40] 
apparently as an example of an arbitrary choice of constants. 
• GEN_C - According to Knuth this and GEN_D have been discussed in the literature, 
but they perform poorly because their multipliers are too small. 
• GEN_D - The multiplier of 23 is much too small. 
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PARAMETERS FOR CONGRUENTIAL GENERATORS 

Generator a c m 

UNIF 16807 0 231-1 

UNIF2 16807 0 231-1 

GEN_A 69069 1 232 

GEN_B 3141592683 2718281829 235 

GEN_C 129 1 235 

GEN_D 23 0 108+ 1 

GEN_F 262145 1 235 

GEN_G 16807 0 232 

GEN_H 630360016 0 231-1 

GEN_I 62605 0 229 

GENJ 69069 0 232 

GEN_L 65539 0 231 

• GEN_E - A Fibonacci generator without lag; that is, Xn+1 = Xn + X,^. This formulation 
is known to give poor results. 
• GEN_F - A generator with a = 218 + 1, which can be shown to be unsatisfactory from 
number theory. 
• GEN_G - A naive (incorrect) implementation with a = 16807 (same as UNIF and 
UNIF2). 
• GEN_H - This multiplier is used in SIMSCRIPT II.5 and in DEC-20 FORTRAN 
according to Bratley [1983]. 
• GEN_I - Generator with a = 62605 used in the Berkeley Unix Pascal generator and 
found by Marsaglia [1985] to be "not so good" on a stringent test not used here. 
• GEN_J - Uses a multiplier given by Marsaglia as a "failure bordering on the 
spectacular" for a stringent test. 
• GEN_K - Marsaglia's combination generator using a multiplicative Fibonacci type and 
a difference lag-1 Fibonacci, combined by difference. 
• GEN_L - An implementation using the multiplier 65539 used in the infamous IBM 
generator called RANDU. 

Testing Procedure 

Each generator was tested with the following set of 23 initial seeds: 

Beginning integers: 0, 1, 2, 3, 4. 
Choices the author has often used: 123456789, 1111111, 6999. 
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Powers of 2: 65536, 16777216, 1078741824. 
Powers of 10: 10, 100 
More choices sometimes used: 194305786, 1217344457, 314159276, 543219876, 9571916, 
5868958. 
Choices made by Bratley et al: 1234567890, 1933985544, 2050954260, 918807827. 

The seed 1078741824 was used mistakenly; the 30th power of 2 is really 1073741824.   The 
congruential generators with c = 0 do not work with the seed 0, so it was omitted for them. 

The Rantests were not written with a general call, but must be edited to change the 
generator call to the specific one to be tested, then recompiled. A general facility using string 
manipulation might be desirable here. 

Most of the tests took about a minute of computer time on a 486, with the range being 
20 seconds to 2 minutes. The combined generator GEN_K usually took almost twice as long as 
the others. This is not surprising, since it effectively combines two separate generators. 

Verification Testing on the Rantest Routines 

Rantest3 

For this test 300 pairs of numbers using generator GEN_K and seed 2 were sorted into 
a 10 x 10 grid.  Categorization was hand checked.  Computation of chi square was checked. 

Rantest4 

This test looked at 20 gaps of length up to 10 using generator GEN_A and seed 2. Only 
the .0 to .1 and the .9 to 1.0 gaps were checked (these were easiest to hand count). The counts 
agreed; the computation of chi square agreed; the P values seemed good with a rough table 
lookup using the 9 degrees of freedom (formula assumed > 30 df, but still looked like about 3 
places accuracy). 

Rantest5 

A special run was made with 100 sets of 4 draws, using generator GEN_B and seed 2. 
With each draw was printed the permutation number, of the 24 possible. It was verified that 
numbers were assigned uniquely to permutations. These were as follows: 

dabc cdba cadb cabd dcab bdac bcda bead dacb bdea bade bacd 
1     2     3     4     5     6     7     8     9    10    11    12 

dbac cdab cbda cbad deba adbc aedb acbd dbca adeb abdc abed 
13    14    15    16    17    18    19    20    21    22    23    24 

The counts of these were hand checked.  Computation of chi square was verified. 
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Rantest6 

A special run was made with 100 runs of length up to 4, using seed 2 with GEN_L. The 
results were hand checked to compare with the run distribution obtained by the software. Runs 
were 49 of length 1, 24 of 2, 22 of 3, and 5 of 4 or more. The probabilities of runs of these 
lengths are 1/2, 2/6, 3/24, and 1/24. Chi square value is 10.02, which checks. Degrees of 
freedom = 3. x = 3.1654384, Z(x) = .0026613, P(x) = .999223, P value = .01840 by hand 
computation using the odd degree of freedom formula programmed and interpolation in table for 
P(x). 

Random Number Generator Listings 

FUNCTION UNIF2(IX) 
INTEGERS IX, Kl 

C 

C PORTABLE RANDOM NUMBER GENERATOR FROM BRATLEY, FOX & SCHRÄGE p319 
C 
C USES IX = 16807 * IX MOD(2"31 -1) 
C PROBABLY REQUIRES DECLARATION INTEGERS IX, Kl 
C 
C INPUT: IX = INTEGER > 0, < 2147483647 
C 
C OUTPUT: DC = NEW RANDOM INTEGER 
C UNIF = UNIFORM FRACTION BETWEEN 0 AND 1 
C 

Kl = IX/127773 
IX = 16807 • (IX - Kl*127773) - Kl • 2836 
IF (IX .LT. 0) IX = IX + 2147483647 
UNIF2 = IX * 4.656612875E-10 
RETURN 
END 

REAL FUNCTION UNIF(1SEED) 
C 
C PARK & MILLER GENERATOR.  FROM KRUGER: EFFICIENT FORTRAN PROGRAMMING 
C 

INTEGERM KA KQ, KR M, ISEED 
INTEGERM KHI, KLO, TEST 
DATA KA /16807/, M /2147483647/, KQ /127773/, KR /2836/ 

C 
KHI = ISEED / KQ 
KLO = MOD(ISEED.KQ) 
TEST = KA*KLO - KR'KHI 
IF (TEST .GT. 0) THEN 

ISEED = TEST 
ELSE 

ISEED = TEST + M 
END IF 
UNIF = REAL(ISEED) / REAL (M) 
RETURN 
END 

• •(■••«»••««(••(••(•••(•»••••••••^•■••••••••••••■•»•••••••••••(••ItlltltltXX 

FUNCTION GEN_A(ISEED) 
C WRITTEN BY BOB GUY AS RANX TO EMULATE THE VAX ROUnNE CALLED RAN 

REAL*8 RAND 
REAL*8 XSEED.YSEED 
INTEGERS ISEED 

C       PARAMETER CNST = 69069.D0 
DATA CNST/ 69069.0D0 / 
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XSEED = ISEED 
IF (XSEED .LT. O.DO) XSEED = XSEED + 2.DO *• 32 
YSEED = (XSEED'CNST) + l.DO 
XSEED = YSEED -(ANINT(YSEED /2.DO**32) * 2.DO**32) 
IF (XSEED .LT. 2.DO**32) THEN 

ISEED = INT(XSEED) 
ELSE 

ISEED = INT(XSEED - 2.DO"32) 
ENDIF 
XSEED = INT(XSEED /256.D0) 
RAND = XSEED / (2.DO*,24) 
IF (RAND .LT. O.DO) RAND = 1.DO + RAND - 5.9064645D-8 
GEN_A = RAND 

C      RANX = RAND 
C       wrile(3,'(f9.7)*) ranx 

RETURN 
END 

»»««••••««*«*•*•♦»*•♦****»»•••**»*♦*«**«**••»♦*»•••*»•*»***•*****•************** 

REAL*8 FUNCTION GEN_B(ISEED) 
INTEGERM ISEED 
REAL'8 A C, XMOD, YSEED, XSEED 
DATA A / 3141592653.D0 /, C / 2718281829.D0 / 
XMOD = 2.D0 •• 35 
XSEED = ISEED 
IF (XSEED .LT. O.DO) XSEED = XSEED + 2.D0 •* 32 
YSEED = DMOD(XSEED*A + C, XMOD) 
ISEED = INT(YSEED) 
GEN_B = YSEED / XMOD 
RETURN 
END 

«»»•»•»«•••«*»«*«•*•*••»«»«•••«»«»••**»*»»••»»*•»••*•*»•»•»•**»*»»•****•***•**♦* 

REAL*8 FUNCTION GEN_C(ISEED) 
INTEGERM ISEED 
REAL*8 A C, XMOD, YSEED, XSEED 
DATA A / 129.D0 /, C / l.DO / 
XMOD = 2.D0 *• 35 
XSEED = ISEED 
IF (XSEED .LT. O.DO) XSEED = XSEED + 2.DO ** 32 
YSEED = DMOD(XSEED*A + C, XMOD) 
ISEED = INT(YSEED) 
GEN_C = YSEED / XMOD 
RETURN 
END 

«»«»••«*«*••«««•••»•««••*«••«•«»•»•««**»*«»•*♦»*****»»»*«**•••••»*•*•»*»*****»** 

REAL»8 FUNCTION GEND(ISEED) 
INTEGERM ISEED 
REAL*8 A, C, XMOD, YSEED, XSEED 
DATA A / 23.DO/, C/O.DO/ 
XMOD = 10.DO"8 + l.DO 
XSEED = ISEED 
IF (XSEED .LT. O.DO) XSEED = XSEED + 2.D0 ** 32 
YSEED = DMOD(XSEED*A + C, XMOD) 
ISEED = INT(YSEED) 

C       WRITE(3,99) XMOD, XSEED, YSEED 
C   99 FORMAT('DEBUG XMOD, XSEED, YSEED',3F12.1) 

GEN_D = YSEED / XMOD 
RETURN 
END 

»«♦«»»»»•»•»•«»*»*»»•»»*♦••••*»»*»•*•••»»«•»••»»••»»»»**«•»*•****♦*********"**• 

REAL*8 FUNCTION GEN_E(ISEED) 
C FIBONACCI GENERATOR 

INTEGERM ISEED 
REAL*8 A C, XMOD, YSEED, XSEED 
DATA A / 3141592653.D0 /, C / 2718281829.D0 / 
XMOD = 2.D0 ** 32 
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XSEED = A 
A = ISEED 
IF (A .LT. 0.DO) A = A + 2.D0 •• 32 
YSEED = DMOD(XSEED + A, XMOD) 
ISEED = INT(YSEED) 
GEN_E = YSEED / XMOD 
RETURN 
END 

•««•••••••••••MM »**•♦«»««•»**♦»»*♦«***»♦««*«•••«*»*«**•♦«»«»*«««»«««»««««»».»» 

REAL'8 FUNCTION GEN_F(ISEED) 
INTEGERM ISEED 
REAL*8 A, C, XMOD, YSEED, XSEED 
DATA A / 262145.D0 /, C / 1.D0 / 

C AIS2**18 + 1 
XMOD = 2.D0 •» 35 
XSEED =ISEED 
IF (XSEED .LT. 0.D0) XSEED = XSEED + 2.D0 ** 32 
YSEED = DMOD(XSEED*A + C, XMOD) 
ISEED = INT(YSEED) 
GEN_F = YSEED/XMOD 
RETURN 
END 

*♦»«***»*»••••»**•»»»*••»♦»»»»»•«•**»«»•»«««»»««»««»»,»«««,,„,„„„„,„,„,„ 

FUNCTION GEN_G(ISEED) 
C 

C THIS AND NEXT ARE IMPLEMENTATIONS OF MULTIPLIERS MENTIONED BY 
C BRATLEY et al ON p 184. THIS ONE IS USED IN APL, IMSL AND SIMPL/I 
C 

INTEGERS ISEED 
DATA A / 16807. / 
XMOD = 2147483647.D0 
XSEED =ISEED 
IF (XSEED .LT. 0.D0) XSEED = XSEED + 2.D0 •• 32 
YSEED = DMOD(XSEED*A XMOD) 
ISEED = INT(YSEED) 
GEN_G = YSEED / XMOD 
RETURN 
END 

••*•**•••••••••• ••••♦*••••»*.*«♦,.•»♦,»„«»»,,,,»»,„, ♦»»*.»*♦♦«»*»»»»,»»»«,♦»„ 

FUNCTION GEN_H(ISEED) 
C 

C THIS MULTIPLIER IS USED IN SIMSCRIPT II.5 AND IN DEC-20 FORTRAN 
C 

INTEGERS ISEED 
REAL*8 A XMOD, XSEED, YSEED 
DATA A/630360016. / 
XMOD = 2147483647.D0 
XSEED = ISEED 
IF (XSEED .LT. O.DO) XSEED = XSEED + 2.D0 ♦* 32 
YSEED = DMOD(XSEED*A XMOD) 
ISEED = INT(YSEED) 
GENH = YSEED / XMOD 
RETURN 
END 

• ••••••••••••••••••MMMMtM •♦••••••••»••»•••••*•••••»•••«••»««•••••,•#••»»»•» 

FUNCTION GEN I(ISEED) 
C 

C MENTIONED ON p 7 OF MARSAGLIA. BERKELEY UNIX PASCAL. NOT SO GOOD 
C 

REAL*8 A XMOD, XSEED, YSEED 
INTEGERS ISEED 
DATA A / 62605. / 
XMOD = 2.D0 ** 29 
XSEED = ISEED 
IF (XSEED .LT. O.DO) XSEED = XSEED + 2.D0 ** 32 
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YSEED = DMOD(XSEED*A XMOD) 
ISEED = INT(YSEED) 
GENJ = YSEED / XMOD 
RETURN 
END 

.»««♦•••»»**••»««*«•»»*••»»»♦••»»•«•♦•*♦*•*»»»**»•♦♦**»♦***•******************** 

FUNCTION GENJ(ISEED) 
C 
C MENTIONED BY MARSAGUA ON p 7. "SPECTACULAR FAILURE" 

C 
REAL*8 A XMOD, XSEED, YSEED 
INTEGER*4 ISEED 
DATA A / 69069. / 
XMOD=2.D0**32 
XSEED =ISEED 
IF (XSEED .LT. 0.D0) XSEED = XSEED + 2.D0 ** 32 
YSEED = DMOD(XSEED*A XMOD) 
ISEED = INT(YSEED) 
GENJ = YSEED / XMOD 
RETURN 
END 

»««♦«««•»»*«♦«»•••«♦**«»****••••*♦«*»•«*»••*•«♦»»»•»»**♦••»♦***»•*************** 

FUNCTION GEN_K(ISEED) 
C 
C COMBINATION GENERATOR COMBO GIVEN BY G. MARSAGLIA p9 IN 
C COMPUTER SCIENCE AND STATISTICS: THE INTERFACE, 1985 
C 

INTEGERS ISEED, 1X0, 1X1, 1X2, JYO, JY1, JY2, JY3 
REAL*8 XMOD, YMOD, DIFF 

C 
C CHOICES OF STARTING VALUES AT RANDOM. IX ODD 
C 

DATA 1X1 / 1406829 /, 1X2 / 7843281 /, 
&      JY2 /15272794 /, JY3 /11523568 / 

C     DATA 1X1 / 14728051 /, 1X2 /13225497 /, 
C    &      JY2 / 15652424 /, JY3 / 17735477 / 
C     DATA 1X1 / 5525003 /, 1X2 / 2481953 /, 
C    &      JY2 /18476168 /, JY3 / 7136408 / 
C 

XMOD = 2.D0 ** 32 
YMOD = 2.D0 •* 30 - 35. 
JY1 = ISEED 
IF (JY1 .LE. 0) JY1 = JY1 + YMOD 
DCO = MOD(IX2 • 1X1, XMOD) 
JYO = MOD(JY3 - JY1, YMOD) 
DIFF = UCO - JYO 
IF (DIFF .LE. 0.) DIFF = DIFF + XMOD 
GENJC = DMOD(DIFF, XMOD) / XMOD 

C 
C MOVE STACKS DOWN 
C 

JY3 = JY2 
JY2 = JY1 
ISEED = JYO 
1X2 = IX1 
1X1 = 1X0 
RETURN 
END 

»««««•«•»»*•»«*»•»««««♦***«*«**•»»•*»»*****««*»*****«********•»»*******•*******♦ 

FUNCTION GEN_L(ISEED) 
INTEGER'4 ISEED 
REAL*8 CNST, XSEED, YSEED 
DATA CNST / 65539.0D0 / 
XSEED =ISEED 
IF (XSEED .LT. 0.D0) XSEED = XSEED + 2.D0 ♦♦ 32 
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YSEED = DMOD(XSEED*CNST,2.D0 •* 31) 
ISEED = INT(YSEED) 
GENL = YSEED / (2.DO"31) 
RETURN 
END 

Random Number Test Program Listings 

PROGRAM RANTEST3 
C 

C SORTS  LIM PAIRS OF UNIFORM NUMBERS INTO A GRID KM X KM; 
C THEN DOES CHI SQUARE TEST 
C 

INTEGERS JSEED(23), KSEED 
DIMENSION KARY(100,100) 

C 
DATA JSEED /0, 1, 2, 3, 4, 123456789, 1111111, 6999, 

& 65536, 16777216, 1078741824, 10, 100, 194305786, 
& 1217344457, 314159276, 543219876, 9571916, 5868958, 
& 1234567890, 1933985544, 2050954260, 918807827 / 

C 
UM = 20000 

C       UM = 300 
KM = 64 

C       KM = 10 
C 

WRITE(3>29) UM, KM, KM 
29 FORMATCPAIR UNIFORMITY CHI-SQUARE TEST FOR GENERATOR: GENJ7 

& 18,' PAIRS, SORTED INTO',14,' BY',14,' GRID'/ 
& 'SEED        VALUE CHISQUARE   P VALUE') 

C 
DO 300 NS = 9, 10 
KSEED = JSEED(NS) 

C 
DO 40 J = 1, KM 

DO 30 I = 1, KM 
KARY(I.J) = 0 

30 CONTINUE 
40 CONTINUE 

C 
DO 90 L = 1, LIM 

XI = GENJ(KSEED) 
X2 = GENJ(KSEED) 

C WRITE(3, 49) XI, X2 
49   FORMAT(2F10.6) 

I = KM * XI + 1 
J = KM • X2 + 1 
KARY(I.J) = KARY(I.J) + 1 

C 
90 CONTINUE 

C 
SUM = 0. 
DO 190 J = 1, KM 

DO 160 I = 1, KM 
SUM = SUM + KARY(I,J)**2 

160   CONTINUE 
C 

190 CONTINUE 
C 

CHISQ = SUM*KM'KM/LIM - LIM 
XI = SQRT(2.•CHISQ) - SQRT(2.*KM*KM - 3.) 
PVAL = 1. - GAUSPRB(X1) 

C 
DO 285 J = 1, KM 
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WRITE(3,269) (KARY(I,J),I=1,KM) 
269   FORMAT(64I3) 
285 CONTINUE 

C 
WRITE(3,299) NS, JSEED(NS), CHISQ, PVAL 

299 FORMAT(I4,I12,F10.2,F10.6) 
C 

300 CONTINUE 
STOP 'CHI-SQUARE TEST COMPLETED' 
END 

«*«»•«*♦♦••••«««»»••»••»••»•••«•»•»»*•»««**»*••*•***•»•****•♦*•***♦*•*********** 

PROGRAM RANTEST4 
C 
C GAP TEST. FROM KNUTH, VOL 2, p 56 
C 

INTEGER'4 JSEED(23), KSEED 
REAL*8 GEN_F 
DIMENSION KARY(5,100), ALPH(5), KT(5), PVAL(5), ISUM(5), CHISQ(5) 
LOGICAL DEBUG 

C 
DATA JSEED /0, 1, 2, 3, 4, 123456789, 1111111, 6999, 

& 65536, 16777216, 1078741824, 10, 100, 194305786, 
& 1217344457, 314159276, 543219876, 9571916, 5868958, 
& 1234567890, 1933985544, 2050954260, 918807827 / 

C 
DATA NGAP / 7000 /, MT / 70 /, BETA / .1 /, UM /100000 / 
DATAALPH/.0,  .15,  .45,  .75,  .90/ 
DEBUG = .FALSE. 

C 
WRITE(3,29) NGAP, MT, BETA (ALPH(I), 1=1,5) 

29 FORMAT('GAP CHI-SQUARE TEST FOR GENERATOR: GENF7 
& 18,' GAPS OF UP TO LENGTH',14,' OF WIDTH',F6.4/ 
& 'SEED        VALUE CHISQUARE   Ps',F5.2,4F10.2) 

C 
C DO FOR EACH SEED 
C 

DO 300 NS = 2, 23 
KSEED = JSEED(NS) 

C 
C CLEAR COUNTING ARRAYS 
C 

DO 40 J = 1, MT 
DO 30 I = 1, 5 

KARY(I.J) = 0 
30 CONTINUE 
40 CONTINUE 

DO 50 I = 1, 5 
KT(I) = 1 
ISUM(I) = 1 

50 CONTINUE 
NDRAW = 0 

C 
C PROCESS NGAP CASES WHERE GAP IS BETWEEN ALPH AND BETA 

C 
DO 140 L = 1, LIM 

XI = GEN_F(KSEED) 
NDRAW = NDRAW + 1 

C IF (DEBUG) WRITE(3,59) XI 
59   FORMAT(F10.6) 

DO 100 I = 1, 5 
IF (XI .LT. ALPH(I)) GO TO 120 
IF (XI .GT. ALPH(I) + BETA) GO TO 100 
K = KT(I) 
IF (ISUM(I) .LE. NGAP) THEN 

KARY(I,K) = KARY(I,K) + 1 
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KT(I) = 0 
ISUM(I) = ISUM(I) + 1 
GO TO 120 

END IF 
100   CONTINUE 

C 
C INCREASE EACH GAP LENGTH COUNTER 
C 

120 CONTINUE 
C 

NQUIT = 0 
DO 130 I = 1, 5 

KT(I) = MIN(KT(I) + 1, MT) 
C 
C ARE ALL GAP COUNTS COMPLETE? 
C 

IF (ISUM(I) .GT. NGAP) NQUIT = NQUIT + 1 
130   CONTINUE 

IF (NQUIT .GE. 5) GO TO 160 
140 CONTINUE 

C 

C IF DROP THROUGH LOOP, THEN DRAWING LIM NUMBERS WAS NOT 
C ENOUGH TO GET NGAP GAPS. THE GENERATOR MUST BE DOING 
C BADLY. SKIP CHI-SQUARE 
C 

WRITE(3, 149) (ISUM(I)-l, 1=1, 5) 
149 FORMAT('FAlLURE TO COMPLETE. # GAPS RECORDED:',5I5) 

C 
IF (DEBUG) THEN 

DO 150 I = 1, 5 
WRITE(3,169) (KARY(I,J), J=l,70) 

150 CONTINUE 
END IF 

C 
GO TO 300 

C 
C FORM CHI SQUARED STATISTIC 
C 

160 CONTINUE 
C 

IF (DEBUG) THEN 
DO 170 I = 1, 5 

WRITE(3,169) (KARYfl.J), J=l,70) 
169 FORMAT(20I4) 
170 CONTINUE 

END IF 
C 

Q = 1. - BETA 
DO 200 I = 1, 5 

SUM = 0. 
NSUM = 0 
DO 190 J = 1, MT - 1 

SUM = SUM + KARY(I,J)**2 / (BETA * Q"(J-1)) 
NSUM = NSUM + KARY(I,J) 

190   CONTINUE 
C 

SUM = SUM + KARY(I,MT)"2 /(Q**(MT-1)) 
NSUM = NSUM + KARY(I,MT) 

C 
CHISQ(I) = SUM/NGAP - NGAP 

C XI = SQRT(2.*CHISQ(I)) - SQRT(2.*MT - 3.) 
C PVAL = 1. - GAUSPRB(X1) 
C 
C       IF (CHISQ(I) .GE. 2.*MT) THEN 

IF (DEBUG) THEN 
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WR1TE(3,199) I, SUM, NSUM, CHISQ(I) 
199 FORMAT(I4,F10.4,I4,F10.1) 

END IF 
C       END IF 
C 

NU = MT - 1 
X2 = ((CHISQ(I)/NU)**.333 - (1. - 2./9./NU)) / SQRT(2./9./NU) 

PVAL(I) = 1. - GAUSPRB(X2) 
200 CONTINUE 

C 
WRITE(3,249) NS, JSEED(NS), CHISQ(l), (PVAL(I),I=1,5), NDRAW 

249FORMAT(I4>I12,F10.2,5F10.6,I12) 
IF (DEBUG) WRITE(3,259) NDRAW, NSUM 

259 FORMATCPVAL, NDRAW, SUM2',2I10) 
C 

300 CONTINUE 
STOP 'CHI-SQUARE TEST COMPLETED' 
END 

»».»»«»«»»»»•«*»»****•»*»•«♦*»»•••»»»»***••••»**»•»***♦*******•***************** 

PROGRAM RANTEST5 
C 
C PERMUTATION TEST 
C CATEGORIZES SETS OF SIX NUMBERS BY THEIR ORDER, THEN DOES CHI SQUARE TEST 

C 
REAL*8 GEN_D 
INTEGERM JSEED(23), KSEED 
DIMENSION KARY(720), IC(6), UN(6) 
LOGICAL DEBUG 

C 
DATA JSEED /0, I, 2, 3, 4, 123456789, 1111111, 6999, 

& 65536, 16777216, 1078741824, 10, 100, 194305786, 
& 1217344457, 314159276, 543219876, 9571916, 5868958, 
& 1234567890, 1933985544, 2050954260, 918807827 / 

C 
LIM = 5000 
KM = 6 
KFAC = 720 

C 
DEBUG = .FALSE. 
IF (DEBUG) THEN 

LIM = 100 
KM = 4 
KFAC = 24 

END IF 
C 

WRITE(3,29) LIM, KM, KFAC 
29 FORMAT('PERMUTATION CHI-SQUARE TEST FOR GENERATOR: GEN_D7 

& 16,' SETS OF*,I2,' SORTED BY WHICH OF',I4,' PERMUTATIONS'/ 
& 'SEED        VALUE CHISQUARE   P VALUE') 

C 
DO 300 NS = 1, 23 
KSEED = JSEED(NS) 

C 
DO 40 J = 1, KFAC 

KARY(J) = 0 
40 CONTINUE 

CHISQ = 0. 
PVAL = 0. 

C 
DO 190 L = 1, LIM 

DO 80 J = 1, KM 
UN(J) = GEND(KSEED) 

80   CONTINUE 
C IF (UN(KM) .EQ. UN(KM-l)) GO TO 250 
C 
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IF (DEBUG) THEN 
WRITE(3,89) (UN(I),I=1,KM) 

89      FORMAT(6X,6F10.6) 
END IF 

C 

C SORT TO DETERMINE PERMUTATION NUMBER 
C 

DO 130 JR = KM, 1, -1 
UMAX=0. 
DO 110 1 = 1, JR 

IF (UN(I) .LT. UMAX) GO TO 110 
UMAX = UN(I) 
IMAX = I 

110      CONTINUE 
C 

IC(JR) = IMAX - 1 
SWAP = UN(JR) 
UN(JR) = UN(IMAX) 
UN(IMAX) = SWAP 

130   CONTINUE 
C 

C USE KNUTH FORMULA TO IDENTIFY PERMUTATION NUMBER 
C 

ISUM = 0 
DO 150 I = 1, KM-1 

ISUM = ISUM + IC(I) 
ISUM = ISUM * (1+1) 

150   CONTINUE 
ISUM = ISUM + IC(KM) + 1 

C 
IF (DEBUG) THEN 

WRITE(3,159) ISUM 
159      FORMAT(I6) 

END IF 
C 

IF (ISUM .LE. 0 .OR. ISUM .GT. KFAQ THEN 
WRITE(3,169) NS, L, ISUM 

169      FORMAT('INDEX ERROR FOR SEED, SET, VALUE',314) 
ELSE 

KARY(ISUM) = KARY(ISUM) + 1 
END IF 

C 
190 CONTINUE 

C 
SUM = 0. 
ISUM2 = 0 
DO 210 I = 1, KFAC 

SUM = SUM + KARY(I)"2 
ISUM2 = ISUM2 + KARY(I) 

210 CONTINUE 
C 

CHISQ = SUM»KFAC/LIM - UM 
C     IF (CHISQ .LE. 0.) THEN 
C       IF (DEBUG) THEN 

WRITE(3,239) (KARY(I), I=1,KFAQ 
239   FORMAT(13I6) 

C PVAL = 1. 
C        GO TO 250 
C       END IF 
C 

XI = SQRT(2.*CHISQ) - SQRT(2.*KFAC - 3.) 
PVAL = 1. - GAUSPRB(Xl) 

C 
250 CONTINUE 

WRITE(3,299) NS, JSEED(NS), CHISQ, PVAL 

60 



299 FORMAT(I4,I12,F10.2,F10.6) 

C 
300 CONTINUE 

STOP 'CHI-SQUARE TEST COMPLETED' 
END 

«»««««««•*»«»*«••»**•**»***»*••*»**»•*»•»•*»»*«*•»***«»»»*♦********************* 

PROGRAM RANTEST6 
C 
C RUN TEST. FROM KNUTH, VOL 2, p 68 
C 

INTEGERS JSEED(23), KSEED 
REAL*8 GEN_D 
DIMENSION KARY(IOO) 
LOGICAL DEBUG 

C 
DATA JSEED /0, 1, 2, 3, 4, 123456789, 1111111, 6999, 

& 65536, 16777216, 1078741824, 10, 100, 194305786, 
& 1217344457, 314159276, 543219876, 9571916, 5868958, 
& 1234567890, 1933985544, 2050954260, 918807827 / 

C 
DATA NRUN / 25000 /, MT / 6 /, PI / 3.14159276 / 
DEBUG = .FALSE. 

C 
WRITE(3,29) NRUN, MT 

29 FORMAT('RUN CHI-SQUARE TEST FOR GENERATOR: GEN_D7 
& 18,' RUNS OF OF INCREASING VALUES UP TO LENGTH',14/ 
& 'SEED        VALUE CHISQUARE   P VALUE') 

C 
C DO FOR EACH SEED 
C 

DO 300 NS = 2, 23 
KSEED = JSEED(NS) 

C 
C CLEAR KOUNTING ARRAY 
C 

DO 40 J = 1, MT 
KARY(J) = 0 

40 CONTINUE 
NDRAW = 0 
CHISQ = 0. 
PVAL = 0. 

C 
C PROCESS NRUN CASES 
C 

DO 140 L = 1, NRUN 
X0 = GEN_D(KSEED) 

C IF (DEBUG) WRITE(3,69) X0 
69   FORMAT(F10.6) 

NDRAW = NDRAW + 1 
DO 100 J = 1, MT - 1 

XI = GEN_D(KSEED) 
C IF (DEBUG) WRITE(3,69) XI 

NDRAW = NDRAW + 1 
IF (XI .LT. X0) GO TO 120 
IF (XI .EQ. XO) THEN 

WRITE(»,79) XI, KSEED, L, J 
WRITE(3,79) XI, KSEED, L, J 

79        FORMATC SUCCESSIVE X"s EQUAL TO',F15.12, 
& ' SEED AND INDICES',112, 216) 

GO TO 120 
END IF 
X0 = X1 

100   CONTINUE 
C 
C IF FALL THROUGH LOOP, RUN IS AT LEAST MT 
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c 
KARY(MT) = KARY(MT) + 1 
GO TO 140 

C 
120 CONTINUE 

C 
KARY(J) = KARY(J) + 1 

140 CONTINUE 
C 

IF (DEBUG) THEN 
WRITE(3,159) (KARY(I), 1=1, MT) 

159   FORMAT(10I5) 
END IF 

C 
C FORM CHI SQUARED STATISTIC 
C 

SUM = 0. 
NSUM = 0 
FAC = 1. 
DO 190 J = 1, MT - 1 

FAC = FAC ♦ (J + 1.) 
P = J/FAC 
SUM = SUM + KARY(J)**2 / P 
NSUM = NSUM + KARY(J) 

190 CONTINUE 
C 

P = 1./FAC 
SUM = SUM + KARY(MT)»*2 / P 
NSUM = NSUM + KARY(MT) 

C 
CHISQ = SUM/NRUN - NRUN 

C       IF (CHISQ .LE. 0.) THEN 
C PVAL1 = 1. 
C IF (DEBUG) THEN 
C WRITE(3,199) (KARY(I),I=1,MT) 
C END IF 
C GO TO 280 
C       END IF 

XI = SQRT(2.*CHISQ) - SQRT(2.*MT - 3.) 
PVAL1 = 1. - GAUSPRB(X1) 

C 

IF (CHISQ .GE. 2.*MT) THEN 
IF (DEBUG) THEN 

WRITE(3,199) (KARY(I),I=1,MT) 
199      FORMAT(20I4) 

END IF 
END IF 

C 
NU = MT - 1 

X2 = ((CHISQ/NU)".333 - (1. - 2./9./NU)) / SQRT(2./9./NU) 
PVAL2 = 1. - GAUSPRB(X2) 

C 

C SMALL NU EXPANSION, FOR NU ODD. ABRAMOWITZ & STEGUN p 941 
C 

CHI = SQRT(CHISQ) 
LIMR = (NU - 1) / 2 
RESULT = 0. 
DO 230 IR = LIMR, 1, -1 

RESULT = RESULT + 1. 
F = CHISQ / (2.*IR - 1.) 
RESULT = RESULT * F 

230 CONTINUE 
RESULT = RESULT ♦ EXP(-CHISQ/2.) / SQRT(2.*PI) 
PVAL = 2.*(1. - GAUSPRB(CHI) + RESULT / CHI) 

C 
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C PRINT LINE OF OUTPUT TABLE FOR THIS SEED 

C 
280 CONTINUE 

WRITE(3,299) NS, JSEED(NS), CHISQ, PVAL, NDRAW 
299FORMAT(I4,I12,F10.2,F10.6,U2) 

IF (DEBUG) WRITE(3,309) PVAL1, PVAL2, NDRAW, NSUM, RESULT, F 
309 FORMAT('PVALs, NDRAW, SUM2*,2F10.6,2I10,F10.6,F10.2) 

C 
300 CONTINUE 

STOP 'RUN TEST COMPLETED' 
END 

»«««««»««**«*»••*♦««•«*»»•*•••»*•»»•«»*»»»•«»***••***•*•**•♦******•************* 

PROGRAM RANTEST7 
C 
C MARSAGLIA OVERLAPPING TRIPLES TEST 
C USES 30,000 NUMBERS AND LOOKS AT TRIPLES. UNIFORMITY AND INDEPENDENCE 

C 
INTEGERM JSEED(23), KSEED 
DIMENSION KARY(12,12,12), LARY(12,12) 

C 
DATA JSEED / 0, 1, 2, 3, 4, 123456789, 1111111, 6999, 
&     65536, 16777216, 1078741824, 10, 100, 194305786, 
&    1217344457, 314159276, 543219876, 9571916, 5868958, 
&    1234567890, 1933985544, 2050954260, 918807827 / 

C 
LIM = 30000 
KM = 8 

C 
WRITE(3,29) UM, KM, KM, KM 

29 FORMAT('OVERLAPPING TRIPLES TEST FOR GENERATOR: GEN_K7 
& 18,' SETS, SORTED INTO',13,' BY',13,' BY',I3,' GRID'/ 
& 'SEED        VALUE CHISQUARE   P VALUE') 

C 
DO 300 NS = 1, 23 
KSEED = JSEED(NS) 
CHISQ = 0. 
PVAL = 0. 

C 
DO 40 K = 1, KM 

DO 30 J = 1, KM 
LARY(J.K) = 0 
DO 20 I = 1, KM 

KARY(I,J,K) = 0 
20      CONTINUE 
30 CONTINUE 
40 CONTINUE 

C 
XI = GEN K(KSEED) 
X2 = GENJC(KSEED) 

C       WRITE(3,49)X1*KM 
C       WRITE(3,49) X2^KM 
C   49 FORMAT(F10.6) 

IF (XI .EQ. X2) GO TO 280 
C 

10 = KM ♦ XI + 1 
JO = KM • X2 + 1 

C 
C SORT SUCCESSIVE TRIPLES FROM XI, X2, X3 
C 

DO 90 L = 3, LIM 
X = GEN_K(KSEED) 

C WRITE(3,49) X'KM 
K0 = KM ♦ X + 1 
KARY(I0,J0,K0) = KARY(I0,J0,K0) + 1 
LARY(J0,K0) = LARY(J0,K0) + 1 
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10= JO 
JO = KO 

90 CONTINUE 
C 
C ADD TRIPLE Xn-1, Xn, XI 
C 

K0 = KM * XI + 1 
KARY(I0,J0,K0) = KARY(I0,J0,K0) + 1 
LARY(J0,K0) = LARY(J0,K0) + 1 
10= JO 
J0 = K0 

C 
C FINALLY Xn, XI, X2 TO COMPLETE CYCLE 
C 

KO = KM * X2 + 1 
KARY(I0,J0,K0) = KARY(I0,J0,K0) + 1 
LARY(JO.KO) = LARY(JO.KO) + 1 

C 

C FORM CHI-SQUARE PIECES 
C 

SUMK = 0. 
SUML = 0. 
DO 190 K = 1, KM 

DO 160 J = 1, KM 
SUML = SUML + LARY(J,K)"2 
DO 130 I = 1, KM 

SUMK = SUMK + KARY(I,J,K)»*2 
130      CONTINUE 
160   CONTINUE 
190 CONTINUE 

C 

C       WRITE(3, 209) ((LARY(J,K),J=1)KM),K=1>KM) 
C 209 FORMAT(16I4) 
C       DO 220 K = 1, KM 
C WRITE(3,209) ((KARY(I,J,K),I=1,KM),J=1,KM) 
C 220 CONTINUE 
C 

CHISO = (SUMK*KM"3 - SUML'KM'KM) / UM 
NU = KM"3 - KM'KM 
XI = SQRT(2.*CHISQ) - SQRT(2.'NU - 1.) 
PVAL = 1. - GAUSPRB(X1) 

C 
280 CONTINUE 

WRITE(3,299) NS, JSEED(NS), CHISQ, PVAL 
299 FORMAT(I4,I12,F10.2,F10.6) 

C 
300 CONTINUE 

STOP 'OVERLAPPING TRIPLES TEST COMPLETED' 
END 

*••*♦*««♦♦»»••♦«»**»«♦****««»»»«»♦»»*«♦««,*♦»,»«*♦»*»,,,,»,,,,,,,»„,,,,,,,,,,„,„,,„ 

FUNCTION GAUSPRB(X) 
C 

C COMPUTES THE PROBABILITY THAT A RANDOM VARIABLE Y THAT HAS 
C THE GAUSSIAN DISTRIBUTION WITH MEAN 0 AND VARIANCE  1  IS 
C LESS THAN THE INPUT VALUE X. ABRAMOWITZ & STEGUN p 932 
C 

REAL'8 DCOEFF(6), SUM, XX 
DATA DCOEFF / .0498673470, .0211410061, .0032776263, 
&      .0000380036, .0000488906, .0000053830 / 

C 
XX = X 
IF (X .LT. 0.) XX = -X 
SUM = 1. 
DO 50 I = 1, 6 

SUM = SUM + DCOEFF(I) * XX*»I 
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50 CONTINUE 
C 

XX = 1. - i • SUM"(-16) 
GAUSPRB = XX 
IF (X .LT. 0.) GAUSPRB = 1. - XX 

C 
RETURN 
END 
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APPENDIX C - RESULTS OF RANDOM NUMBER GENERATOR TESTS 

Results Summary 

It was noted early in testing that UNIF and UNIF2 are essentially identical, so only the 
latter was used for most testing. Some generators gave consistently good results (denoted by . 
in the table), some good results except for specific seeds (seed numbers), some gave slightly bad 
results for several seeds (?), and some gave consistently bad results (X). 

The best generators are GEN_K and GEN_H, followed by GEN_B, GEN_A, and UNIF2. 
The worst seed is seed 10, which is 22\ closely followed by 9, which is 216. Large powers of 
2 make bad seeds. However, seed 19 is sometimes a bad choice, and that is used because it is 
a friend's phone number. 

Generator Rantest3 Rantest4 Rantest5 Rantestö Rantest7 

UNIF2 . . ? . 10 

GEN_A • . . ? , 

GEN_B • . . . 10 

GEN_C • ? . X . 

GEN_D X X X X X 

GEN_E • X X X X 

GEN_F X X X X X 

GEN_G X 9,10,19 9,10,11,19 9,10,19 9,10,14 

GEN_H . . . . 

GENJ 9,10 9,10 9,10 10 9,10,19 

GENJ X 9,10 10 10,16 9,10 

GEN_K . . . . . 

GEN_L X 9,10,22 9,10 X X 

Summary Plots 

The results of the Rantests are P values from chi-square tests. If a generator is good, then 
these P values should be uniformly distributed between 0 and 1. Therefore a composite summary 
of the test results may be made by plotting the sorted P values and comparing to a 45 degree 
line. The next two pages have such plots for 12 of the generators subjectively ranked in order 
of decreasing quality. Generators GEN_E and GEN_F are so bad that their plots are not shown; 
the latter is essentially all zeros. 
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1. GEN K 4. GEN A 

2. GEN H 5. UNIF2 

3. GEN B 6. GSS GENERATOR 
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7. GEN I 10. GEN G 

8. GEN J 11. GEN C 

9. GEN L 12. GEN D 
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A     Few     Detailed 
Samples 

The chi-square 
values do not indicate 
what is going on that 
makes the generators 
good or bad. Just a 
few examples will 
illustrate. 

The figure 
shows the number of 
gaps of each length 
from Rantest4 for the 
good generator GEN_K 
and     for     GEN   E 

GAP TEST FOR GEN.E AND GENJC 

n as 

-Theory 

Gap Length 

-GEN_E        -^-GEN_K 

(terrible). The theoretical distribution is also shown; it is barely discernable from the results for 
GENJC. For GEN_E gaps of lengths 1 and 2 are badly underrepresented, with gaps of 4 and 
up making up the difference. 

Patterns are discernable in the 64 x 64 array computed in Rantest3 for bad generators. 
Portions of the array are given for two of the generators. A good generator has the entries 
distributed randomly around 4.88. 

Rantest3 Array for GEN_D (portion) 
17 
13 
16 
19 
15 
9 

12 
12 
16 
17 
9 
9 

0 20 
0 15 
0 17 
0  0 

0 17 
0 13 
0 14 

0 
0 
0 
9 

11 
14 
10 
12 
12 
9 

14 
10 
8 

17 
0 18 

0 
0 
0 
0 
0 

13 
17 
12 
19 
11 
12 
19 
13 
13 
19 

79142 
39108 
0 95 
0 31 
0  0 

126128 
128137 
116127 
127118 
93137 
28118 
0102 
0 28 

30  0  0 
102  0  0 
124 28  0 
137 90  0 
164121 32 
121140 95 
126128120 
128137136 
86127124 
31118137 
0100164 
0 32121 

0 89 

14 
12 
21 
9 

12 
14 
13 
17 
0 
0 
0 
0 
0 
0 
0 

0 
0 
0 
0 
0 
0 
0 
0 

13 
15 
18 
12 
13 
8 

20 

16 
17 
22 
8 

17 
13 
7 

17 
6 
7 

0 20 
0  0 

0 15 
0 11 
0 14 
0 16 0 14 

0 12 

0 
0 
0 
0 

12 
10 
19 
16 
7 

12 
10 
12 
12 
19 
9 

0 
0 
0 
0 
0 
0 

14 
13 
13 
13 
15 
17 
13 
14 
14 

0 
0 
0 
0 
0 
0 
0 
0 
0 

15 
14 
12 
12 
10 
19 

Rantest3 Array for GENF (portion) 

0 29 
0  0 

0 31 
0103 
0126 
0128 
0120 
0136 

34124 
96137 
119129 
118 30 
121  0 
140 
128 
137 
99 
31 
0 
0 
0 
0 
0 

0  0 
0  0 

33  0 
106  0 
136 31 
134 91 
119110 
118142 
121126 
140128 
99120 
20129 
0 23 
0 
0 
0 
0 
0 
0 
0 
0 

0 
0 
0 
0 
0 
0 

40 
80 

128 30 
137 96 
136124 37 
134119 86 
112110142 
20131108 
0 261221 

0 251 
0  0 
0  0 
0  0 
0  0 
0  0 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

37 
99 

0 35 
0 84 
0 25 
0  0 

16 28 
14 87 
17130 
0 22 
0 0 
0 0 
0 0 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

19 
1 
0 
0 
0 
0 
0 
0 
0 
0 
0 

18 
13 
18 
13 
19 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

0 
0 
0 
0 
0 

20 
15 
15 
15 
14 
16 
14 
8 

12 
16 
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Selected Output Files 

Given are the output files from tests Rantest3, 5, 4, 6, and 7 on GEN_K, which is a good 
combination generator based on a suggestion of Marsaglia [1985]. These are followed by files 
for GEN_L, a moderately bad generator, and finally those for the generator in the GSS system. 
These are presented here because the P values from these output arrays form the raw data for the 
plots given on page 22.  Another analyst might want to view the data in other ways. 

PAIR UNIFORMITY CHI-SQUARE 
20000 PAIRS, SORTED INTO 

SEED 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 

VALUE CHISQUARE 
1   4129.54 
2 
3 
4 

123456789 
1111111 

6999 
65536 

16777216 
1078741824 

10 
100 

194305786 
1217344457 
314159276 
543219876 

9571916 
5868958 

1234567890 
1933985544 
2050954260 
918807827 

4088.58 
4016.49 
4088.17 
4120.52 
3944.40 
4119.30 
4159.03 
4012.39 
4103.32 
4128.72 
4213.09 
4040.24 
4195.07 
4041.88 
4055.81 
4189.75 
4158.62 
3980.85 
4064.82 
4187.29 
3999.28 

TEST FOR GEN_K 
64 BY 64 GRID 
P VALUE 
.349621 
.526107 
.806821 
.527910 
.387005 
.952956 
.392197 
.238767 
.819103 
.461192 
.352965 
.096598 
.726269 
.134659 
.720169 
.665887 
.147669 
.240161 
.897014 
.628766 
.153951 
.855061 

PERMUTATION CHI-SQUARE TEST 
5000 SETS OF 6 SORTED BY 72 

GAP CHI-SQUARE TEST FOR GENERATOR: GEN 
7000 GAPS OF UP TO LENGTH  70 OF WIDTH" 
SEED 

2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 

VALUE CHISQUARE 
1 
2 
3 
4 

123456789 
1111111 

6999 
65536 

16777216 
1078741824 

10 
100 

194305786 
1217344457 
314159276 
543219876 
9571916 
5868958 

1234567890 
1933985544 
2050954260 
918807827 

79.10 
87.74 
57.26 
72.62 
77.53 
77.43 
73.94 
75.20 
68.69 
69.05 
72.40 
56.25 
50.73 
87.19 
91.43 
72.46 
58.10 
68.06 
85.97 
62.22 
77.83 
84.78 

Ps .00 
.190226 
.063665 
.842390 
.359802 
.225390 
.227855 
.320128 
.284696 
.488021 
.475670 
.366329 
.864898 
.951373 
.068808 
.036866 
.364577 
.822211 
.509298 
.081425 
.705412 
.218429 
.095439 

K 
".1000 

.15 
.296844 
.411352 
.989288 
.867519 
.623744 
.353782 
.432911 
.774559 
.901417 
.370501 
.008136 
.722301 
.903558 
.619446 
.906244 
.838759 
.700262 
.970128 
.837129 
.482313 
.122242 
.638449 

SEED 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 

VALUE CHISQUARE 
0 
1 
2 
3 
4 

123456789 
1111111 

6999 
65536 

16777216 
1078741824 

10 
100 

194305786 
1217344457 
314159276 
543219876 
9571916 
5868958 

1234567890 
1933985544 
2050954260 
918807827 

.45 
.010474 
.786929 
.116408 
.522792 
.004310 
.076969 
.966023 
.751929 
.801399 
.967465 
.823075 
.152411 
.639021 
.694625 
.241722 
.331026 
.138668 
.456839 
.334106 
.566077 
.648191 
.443233 

.75 
.470724 
.516364 
.408702 
.081640 
.690087 
.241328 
.238756 
.287742 
.365851 
.101099 
.533858 
.400661 
.399486 
.475959 
.640814 
.346410 
.842708 
.128525 
.312082 
.425684 
.421655 
.043327 

657.18 
698.94 
770.66 
620.90 
657.47 
746.46 
684.54 
719.97 
737.82 
776.42 
724.00 
727.17 
668.13 
720.83 
751.65 
815.30 
660.64 
711.90 
799.74 
664.96 
712.77 
738.40 
700.10 

.90 
.515326 
.360382 
.309663 
.534074 
.758689 
.077465 
.129351 
.628358 
.107383 
.424802 
.957262 
.117182 
.620159 
.955834 
.510335 
.803441 
.430046 
.808674 
.524949 
.454886 
.047821 
.178650 

FOR GEN_K 
0 PERMUTATIONS 

P VALUE 
.950892 
.698274 
.088225 
.996193 
.950080 
.232499 
.817689 
.484562 
.306295 
.067040 
.442430 
.409833 
.911964 
.475494 
.193635 
.006703 
.940427 
.569225 
.018498 
.925026 
.560214 
.301053 
.687453 
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RUN CHI-SQUARE TEST FOR GENERATOR: GEN K OVERLAPPING TRIPLES TEST FOR GEN K 
40000 RUNS OF INCREASING VALUES TO LENGTH 30000 SETS, SORTED INTO 8 BY 8 BY 8 GRID 
8 SEED VALUE CHISQUARE P VALUE 
SEED VALUE CHISQUARE P VALUE 1 0 369.25 .996938 

1 0 7.94 .338271 2 1 438.07 .624317 
2 1 2.07 .955841 3 2 414.93 .866348 
3 2 5.13 .644541 4 3 460.28 .335723 
4 3 3.04 .880977 5 4 475.61 .177443 
5 4 5.43 .607205 6 123456789 435.83 .652697 
6 123456789 4.39 .733872 7 1111111 421.93 .807140 
7 1111111 6.02 .537882 8 6999 451.29 .449650 
8 6999 4.31 .743412 9 65536 471.43 .214934 
9 65536 3.95 .785289 10 16777216 468.65 .242287 

10 16777216 1.98 .961069 11 1078741824 489.13 .086795 
11 1078741824 2.54 .924239 12 10 465.02 .280911 
12 10 2.50 .927157 13 100 493.50 .066808 
13 100 5.53 .596001 14 194305786 478.44 .154574 
14 194305786 16.26 .022825 15 1217344457 395.88 .962317 
15 1217344457 5.64 .582164 16 314159276 451.81 .442914 
16 314159276 5.79 .564615 17 543219876 443.33 .555527 
17 543219876 7.03 .426053 18 9571916 460.44 .333828 
18 9571916 4.75 .690977 19 5868958 417.44 .846689 
19 5868958 4.00 .779778 20 1234567890 399.90 .949070 
20 1234567890 6.93 .436078 21 1933985544 441.02 .586052 
21 1933985544 6.09 .529327 22 2050954260 452.65 .431791 
22 2050954260 3.38 .847850 23 918807827 430.07 .721902 
23 918807827 6.28 .506916 

The following are output files for the generator GEN_L, which uses the multiplier and 

modulus of RANDU. This is known to be a rather poor generator. 

PERMUTATION CHI-SOUARE TEST FOR GEN L 
PAIR UNIFORMITY CHI-SQUARE TEST FOR GEN L 5000 SETS OF 6 SORTED BY 720 PERMUTATIONS 

20000 PAIRS, SORTED INTO 64 BY  64 SEED VALUE CHISQUARE P VALUE 
GK1D 1 0 .00 .000000 
SEED VALUE CHISQUARE P VALUE 2 1 719.10 .493645 

2 1 4149.61 .271951 3 2 779.30 .058065 
3 2 4086.53 .535116 4 3 737.54 .308931 
4 3 4211.46 .099688 5 4 731.78 .363689 
5 4 4136.50 .321707 6 123456789 723.42 .448413 
6 123456789 3999.69 .854015 7 1111111 710.75 .581192 
7 1111111 3987.40 .883233 8 6999 682.53 .831754 
8 6999 4056.63 .662570 9 65536 10827.90 .000000 
9 65536 406954.30 .000000 10 16777216 276250.40 .000000 

10 167772165100000.00 .000000 11 1078741824 625.79 .994298 
11 1078741824 4033.28 .751451 12 10 680.51 .845119 
12 10 4288.46 .017063 13 100 757.41 .155565 
13 100 4126.67 .361374 14 194305786 757.98 .152057 
14 194305786 4093.08 .506253 15 1217344457 754.24 .175831 
15 1217344457 4075.06 .585150 16 314159276 783.33 .047142 
16 314159276 3946.04 .951116 17 543219876 668.70 .909420 
17 543219876 4034.92 .745637 18 9571916 701.82 .670934 
18 9571916 3951.36 .944739 19 5868958 663.81 .929398 
19 5868958 3948.90 .947759 20 1234567890 707.01 .619580 
20 1234567890 4139.37 .310495 21 1933985544 762.59 .125935 
21 1933985544 4148.38 .276446 22 2050954260 705.86 .631197 
22 2050954260 4156.98 .245784 23 918807827 708.74 .601971 
23 918807827 4189.75 .147669 
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The gap test has an escape provision.  If the generator is doing so poorly that the 
number of draws becomes excessive without reaching the desired 7000 gaps, it quits and 
prints a message (seed 10 below).  If this is the case, then the results should be interpreted as 
the equivalent of a 0 p value for the Chi squared statistic. 

GAP CHI-SQUARE TEST FOR GENERATOR: GEN 
7000 GAPS OF UP TO LENGTH  70 OF WIDTH" 
SEED 

2 
3 
4 
5 
6 
7 
8 
9 

VALUE CHISQUARE 
61.41 
73.69 
76.47 
54.58 
77.91 
60.33 
77.25 

5645.16 

1 
2 
3 
4 

123456789 
1111111 

6999 
65536 

Ps .00 
.730228 
.327474 
.251395 
.897385 
.216622 
.762268 
.232011 
.000000 

FAILURE TO COMPLETE.  # GAPS RECORDED: 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 

1078741824 
10 

100 
194305786 

1217344457 
314159276 
543219876 

9571916 
5868958 

1234567890 
1933985544 
2050954260 
918807827 

93.36 
63.62 
51.62 
50.98 
59.07 
66.86 
78.25 
54.59 
75.93 
64.30 
41.64 
51.10 
83.32 

.027233 

.660424 

.941418 

.948734 

.797237 

.550492 

.208762 

.897131 

.265259 

.637762 

.996213 

.947363 

.115354 

L 
.1000 

.15 
.001747 
.823231 
.765806 
.118879 
.623609 
.767973 
.903373 
.000000 
7000 6250 
.567058 
.189541 
.597304 
.411741 
.381786 
.966239 
.757463 
.867280 
.435953 
.871017 
.605665 
.000040 
.356594 

RUN CHI-SQUARE TEST FOR GENERATOR: GEN_L 
40000 RUNS OF INCREASING VALUES TO LENGTH 
8 
SEED VALUE CHISQUARE P VALUE 

1 0 .00 .000000 
2 1 20.77 .004129 
3 2 10.98 .139669 
4 3 4.11 .766791 
5 4 8.56 .285555 
6 123456789 17.91 .012381 
7 1111111 7.52 .376506 
8 6999 21.15 .003561 
9 65536 17609.20 .000000 

10 16777216 335832.00 .000000 
11 1078741824 9.92 .193152 
12 10 17.87 .012591 
13 100 3.32 .853419 
14 194305786 25.15 .000715 
15 1217344457 6.61 .470451 
16 314159276 10.35 .169820 
17 543219876 7.11 .417804 
18 9571916 4.28 .746452 
19 5868958 10.59 .157744 
20 1234567890 5.89 .552132 
21 1933985544 3.94 .786753 
22 2050954260 5.75 .568797 
23 918807827 4.65 .703024 

.45 
.121468 
.910745 
.146500 
.055237 
.552809 
.749646 
.756201 
.000000 
7000 7000 
.867746 
.255889 
.546289 
.320211 
.263738 
.296031 
.968911 
.304678 
.441941 
.645476 
.686627 
.086565 
.858891 

.75 
.912255 
.311673 
.105356 
.852356 
.013676 
.066800 
.801640 
.000000 
6250 
.662920 
.927902 
.834878 
.588686 
.695407 
.016780 
.240061 
.880626 
.327289 
.138313 
.139398 
.070286 
.092635 

.90 
.324759 
.014619 
.857395 
.893809 
.285429 
.525341 
.466001 
.000000 

.024357 

.377883 

.626399 

.850909 

.516442 

.410536 

.208865 

.198900 

.556500 

.186125 

.777165 

.943420 

.006954 

OVERLAPPING TRIPLES TEST FOR 
30000 SETS, SORTED INTO 8 BY 
SEED 

2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 

VALUE CHISQUARE 
1   2027.60 

123456789 
1111111 

6999 
65536 133342.20 

16777216 389944.10 
1078741824   1149.43 

1076.94 
1962.59 
523.79 
569.36 
1126.67 
1938.12 

10 
100 

194305786 
1217344457 
314159276 
543219876 

9571916 
5868958 

1234567890 
1933985544 
2050954260 
918807827 

599.48 
1178.56 
1127.78 

14886.00 
1962.35 
2013.99 
599.09 
555.20 

1145.26 
1024.75 

14852.44 
1065.40 

GEN_L 
8 BY 8 GRID 
P VALUE 
.000000 
.000000 
.000000 
.007148 
.000065 
.000000 
.000000 
.000000 
.000000 
.000000 
.000001 
.000000 
.000000 
.000000 
.000000 
.000000 
.000001 
.000330 
.000000 
.000000 
.000000 
.000000 
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The following files are test results from the generator used in the GSS system at 

CECOM, and therefore in the SPM. 

PAIR UNIFORMITY CHI-SQUARE TEST FOR GSS PERMUTATION CHI-SQUARE TEST FOR GENERATOR 
20000 PAIRS, SORTED INTC 64 BY  64 IN GSS 

GRID 5000 SETS OF 6 SORTED BY WHICH OF 720 
SEED VALUE CHISQUARE P VALUE PERMUTATIONS 

1 0 4052.12 0.680654 SEED       VALUE CHISQUARE P VALUE 
2 1 4134.45 0.329821 1          0 765.18 0.112730 
3 2 4146.33 0.284018 2          1 775.55 0.069936 
4 3 4118.89 0.393931 3          2 775.55 0.069936 
5 4 4113.15 0.418440 4          3 775.55 0.069936 
6 123456789 4116.43 0.404385 5          4 777.86 0.062425 
7 1111111 3999.28 0.855061 6  123456789 723.71 0.445420 
8 6999 4018.12 0.801770 7    1111111 724.58 0.436460 
9 65536 4115.61 0.407892 8       6999 730.05 0.380787 

10 16777216 4015.26 0.810557 9      65536 702.40 0.665356 
11 1078741824 4047.21 0.699907 10   16777216 736.96 0.314234 
12 10 4112.33 0.421977 11  1078741824 713.06 0.557203 
13 100 3993.96 0.868204 12         10 778.14 0.061533 
14 194305786 4003.79 0.843279 13        100 763.46 0.121416 
15 1217344457 4047.21 0.699907 14  194305786 784.77 0.043671 
16 314159276 3979.62 0.899461 15  1217344457 714.21 0.545140 
17 543219876 3996.42 0.862243 16  314159276 755.10 0.170141 
18 9571916 4086.94 0.533317 17  543219876 794.85 0.024811 
19 5868958 3997.64 0.859196 18     9571916 714.21 0.545140 
20 1234567890 4047.21 0.699907 19     5868958 756.54 0.160929 
21 1933985544 4160.26 0.234611 20  1234567890 695.20 0.732275 
22 2050954260 4121.34 0.383558 21  1933985544 711.62 0.572220 
23 918807827 4128.72 0.352965 22 2050954260 

23 918807827 
707.01 
756.83 

0.619583 
0.159127 

GAP CHI-SQUARE TEST FOR GENERATOR IN GSS 
6500 GAPS OF UP TO LENGTH 70 OF WIDTH 0.1000 
SEED VALUE CHISQUARE Ps 0.00 0.15 0.45      0.75 0.90 

1 0 60.06 0.770141 0.750811 0.270583  0.233189 0.628845 
2 1 59.66 0.781346 0.650550 0.019477  0.817679 0.676581 
3 2 59.10 0.796417 0.668031 0.020155  0.814592 0.681633 
4 3 59.04 0.798081 0.693841 0.026416  0.818795 0.696698 
5 4 60.27 0.763950 0.697565 0.028528  0.836244 0.702075 
6 123456789 68.20 0.504766 0.319372 0.612469  0.482819 0.358713 
7 1111111 57.14 0.845179 0.293034 0.555058  0.176051 0.897143 
8 6999 55.06 0.888627 0.265917 0.437478  0.108680 0.346341 
9 65536 82.50 0.127817 0.752702 0.834128  0.448534 0.171280 

10 16777216 78.86 0.195292 0.835838 0.740581  0.506603 0.077628 
11 1078741824 70.28 0.434553 0.170393 0.378881  0.237267 0.535928 
12 10 63.30 0.670740 0.647165 0.042954  0.876302 0.727100 
13 100 66.78 0.553262 0.580088 0.265777  0.885728 0.491686 
14 194305786 69.32 0.466697 0.786260 0.757810  0.034240 0.008054 
15 1217344457 68.30 0.501262 0.099260 0.006290  0.744610 0.710015 
16 314159276 66.24 0.571856 0.060258 0.100924  0.874196 0.541280 
17 543219876 77.37 0.229110 0.674521 0.165676  0.432569 0.556232 
18 9571916 63.84 0.653023 0.034591 0.207023  0.126443 0.600962 
19 5868958 80.80 0.156785 0.619371 0.000764  0.912909 0.359614 
20 1234567890 91.74 0.035146 0.042005 0.043784  0.874018 0.699561 
21 1933985544 80.93 0.154323 0.740990 0.415336  0.851022 0.073228 
22 2050954260 80.04 0.171185 0.959658 0.839948  0.529940 0.023087 
23 918807827 71.46 0.395971 0.713819 
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RUN CHI-SQUARE TEST FOR GENERATOR IN GSS 
25000 RUNS OF INCREASING VALUES TO LENGTH 
6 
SEED VALUE CHISQUARE P VALUE 

1 0 2.62 0.758752 
2 1 3.01 0.699083 
3 2 3.12 0.680722 
4 3 3.14 0.678316 
5 4 3.03 0.696071 
6 123456789 1.45 0.918415 
7 1111111 4.76 0.445398 
8 6999 8.49 0.131299 
9 65536 9.39 0.094325 

10 16777216 14.19 0.014461 
11 1078741824 2.03 0.844532 
12 10 3.10 0.684632 
13 100 2.82 0.727664 
14 194305786 4.28 0.509403 
15 1217344457 2.64 0.755481 
16 314159276 2.03 0.845620 
17 543219876 1.57 0.905049 
18 9571916 8.92 0.112141 
19 5868958 2.11 0.833536 
20 1234567890 2.15 0.827968 
21 1933985544 9.89 0.078337 
22 2050954260 5.50 0.357518 
23 918807827 4.67 0.457222 

30000 SETS, SORTED INTO 8 BY 8 BY 8 GRID 
SEED VALUE CHISQUARE P VALUE 

1 0 468.85 0.240331 
2 1 473.13 0.199070 
3 2 471.31 0.216072 
4 3 469.83 0.230480 
5 4 470.36 0.225226 
6 123456789 487.82 0.093633 
7 1111111 477.75 0.159984 
8 6999 465.36 0.277197 
9 65536 459.91 0.340144 

10 16777216 476.95 0.166347 
11 1078741824 465.72 0.273229 
12 10 476.45 0.170379 
13 100 477.82 0.159381 
14 194305786 501.83 0.038867 
15 1217344457 464.19 0.290232 
16 314159276 460.35 0.334903 
17 543219876 467.99 0.249178 
18 9571916 456.84 0.378049 
19 5868958 478.17 0.156650 
20 1234567890 500.81 0.041656 
21 1933985544 499.03 0.046930 
22 2050954260 450.51 0.460012 
23 918807827 471.16 0.217500 
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APPENDIX D - RANDOM NUMBER SYNCHRONIZATION IN OSPREY 

Osprey is a space defense mission effectiveness model developed by Teledyne Brown 
Engineering and used in support of many antisatellite system studies by the Army Kinetic Energy 
ASAT System Program Office, Air Force Operational Test and Evaluation Center, Space 
Command, and various contractors. The random number synchronization scheme was developed 
by Jeff Niemuth of Teledyne Brown in 1978. The material here is from the Analyst Manual 
written for the version that supported the ASAT Initial Operational Test and Evaluation [Webb 
1987]. 

RANDOM NUMBER SEED ORGANIZATION The entities for 
which random draws 
are needed are 
interceptor missiles, 
aircraft used to deliver 
the missiles to their 
designated launch point 
and launch them, carrier 
aircraft equipment, 11 
types of ground support 
equipment, base control 
center, satellite targets, 
ground based satellite 
tracking radars, and a 
single overall mission 
control center. All but 
the last three are 
associated with the 
particular base at which 
they are located. The 
generators are organized 
into a two-dimensional 

array as shown. 

The actual random number seeds are stored in a singly dimensioned array JRANGS. 
When a random number is needed for entity K associated with row I and column J of the 
organization scheme, an index is constructed by the formula 

INDEX = IBLOCK(I, J) - IBEGIN(I, J) + K. 

The value of INDEX is used to select the element in JRANGS to use as the seed for the 
particular draw. Here IBLOCK is an array of starting points in JRANGS and IBEGIN is an array 
of first entity numbers for block I J. Most entries in IBEGIN are 1, except for some entities that 
are numbered consecutively across bases. Thus IBLOCK(I, J) is the seed for the first entity in 
position I J. The values used in IBLOCK and the corresponding number of seeds associated with 
each block (equivalent to the maximum number of entities of a class) are as follows: 
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Row 
I 

Column J 

1 2 3 4 5 6 7 

1 1 21 41 61 0 1461 1881 
2 81 101 121 141 0 1531 1961 
3 161 181 201 221 1251 1601 1921 
4 241 261 281 301 1321 1621 0 
5 321 341 361 381 1391 1741 0 
6 401 421 441 461 0 1811 0 
7 481 501 521 541 0 0 0 
8 561 581 601 621 0 0 649 
9 1011 1031 1051 1071 0 0 0 

10 1091 1111 1131 1151 0 0 0 
11 1171 1191 1211 1231 0 0 0 
12 0 0 0 0 0 0 0 
13 0 0 0 0 0 0 0 
14 0 0 0 0 0 0 0 
15 0 0 0 0 0 0 0 
16 645 646 647 648 0 0 0 
17 651 676 701 726 0 0 0 
18 751 816 881 946 0 0 0 
19 641 642 643 644 0 0 0 
20 0 0 0 j 0 0 0 0 

Row I Column J 

1 2 3 4 5 6 7 

1 20 20 20 20 _ 70 40 
2 20 20 20 20 - 70 40 
3 20 20 20 20 70 70 40 
4 20 20 20 20 70 70 _ 
5 20 20 20 20 70 70 _ 
6 20 20 20 20 - 70 _ 
7 20 20 20 20 _ _ _ 

8 20 20 20 20 . . 2 
9 20 20 20 20 . _ _ 

10 20 20 20 20 „ _ . 

11 20 20 20 20 _ a. 

16 1 1 1 1 - _ . 

17 25 25 25 25 _ „ — 

18 65 65 65 65 . _ 

19 1 
  

1 1 1 - 
'   
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The advantage of this scheme is that it will accommodate irregular indexing structures for 
different entities and different quantities of different entities efficiently. As the model changes, 
it is possible to restructure the scheme by changing the values in IBLOCK and adjusting the 
indices used in each random number call accordingly. 
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APPENDIX E - EXPERIMENT DESIGNS FOR SIMULATION STUDIES 

Designs for 3 through 10 factors at 3 
levels are given. The levels are denoted as 
0 = low, 1 = nominal, and 2 = high. 
Efficiencies are given that compare the 
average variance to that obtainable with the 
full factorial, on a per run basis. 

Three factors. 96% 
1)  1  1 1 
2)   1   1 0 
3)  1  0 1 
4) 0  1 1 
5)  1   1 2 
6)  1  2 1 
7)  2  1 1 
8) 0 0 0 
9) 0 2 2 

10) 2 0 2 
11) 2 2 0 
12) 0 0 2 
13)  2 2 2 
14) 0 2 0 
15) 2 0 0 

Four factors. 82% 

1)  1   1 1   1 
2)  1  1 1  0 
3)  1   1 0  1 
4)   1  0 1   1 
5)  0  1 1   1 
6)  1   1 1  2 
7)  1   1 2  1 
8)   1  2 1   1 
9)  2  1 1   1 

10)  1  0 0 0 
11)  1  0 2 2 
12)  1  2 0 2 
13)  1  2 2 0 
14)  0 0 0 2 
15)  0 0 2 0 
16) 0 2 0 0 
17)  2 2 2 2 
18)  2 2 0 0 
19) 2 0 0 2 
20) 0 2 2 2 
21) 2 0 2 0 

Five factors. 81% 

1)  1  1 1   1   1 
2)  1  1 1   1  0 

3)  1   1 1 0  1 
4)  1   1 0 1   1 
5)  1  0 1 1   1 
6) 0  1 1 1   1 
7)  1   1 1 1  2 
8)  1   1 1 2  1 
9)  1   1 2 1   1 

10)  1  2 1 1   1 
11)  2  1 1 1   1 
12) 0 0 2 2 2 
13) 0 2 0 2 2 
14) 0 2 2 0 2 
15)  0 2 2 2 0 
16)  2 0 0 2 2 
17) 2 0 2 0 2 
18)  2 0 2 2 0 
19)  2 2 0 0 2 
20)  2 2 0 2 0 
21) 2 2 2 0 0 
22)  2 2 2 2 2 
23) 0 0 2 0 0 
24) 0 2 0 0 0 
25) 2 0 0 0 0 
26) 0 0 0 0 2 
27)  0 0 0 2 0 

Six factors .70% 

1)  1  1 1 1   1   1 
2)  1   1 1 1   1  0 
3)  1   1 1 1  0  1 
4)  1   1 1 0  1   1 
5)   1   1 0 1   1   1 
6)  1 0 1 1   1   1 
7)  0  1 1 1   1   1 
8)  1   1 1 1   1  2 
9)  1   1 1 1  2  1 

10)  1   1 1 2  1   1 
11)  1   1 2 1   1   1 
12)   1  2 1 1   1   1 
13)  2  1 1 1   1   1 
14) 0 0 0 0 0 2 
15) 0 0 0 0 2 0 
16)  0 0 0 2 0 0 
17) 0 0 2 0 0 0 
18) 0 2 0 0 0 0 
19)  2 0 0 0 0 0 
20)  0 0 2 2 2 2 
21)  0 2 0 2 2 2 
22) 0 2 2 0 2 2 
23) 0 2 2 2 0 2 
24)  0 2 2 2 2 0 
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25) 
26) 
27) 
28) 
29) 
30) 
31) 
32) 
33) 
34) 
35) 

0 0 
0 2 
0 
2 
2 
2 
2 

2 
2 
0 
2 
2 
0 

2 2 
0 0 
0 2 
2 0 0 
2 2 2 

2 
2 
2 
0 
2 
2 
0 
2 
0 

Seven factors. 59% 
1) 1 1 1 1 1 1 1 
2) 1 1 1 1 1 1 0 
3) 1 1 1 1 1 0 
4) 1 1 1 1 0 1 
5) 1 1 1 0 1 1 
6) 1 1 0 1 1 1 
7) 1 0 1 1 1 1 
8) 0 1 1 1 1 1 
9) 1 1 1 1 1 1 : 

10) 1 1 1 1 1 2 
11) 1 1 1 1 2 1 
12) 1 1 1 2 1 1 
13) 1 1 2 1 1 1 
14) 1 2 1 1 1 1 
15) 2 1 1 1 1 1 
16) 0 0 0 0 0 0 0 
17) 2 2 0 0 0 0 0 
18) 2 0 2 0 0 0 0 
19) 2 0 0 2 0 0 0 
20) 2 0 0 0 2 0 0 
21)2000020 
22) 2 0 0 0 0 0 2 
23) 0 2 2 0 0 0 0 
24) 0 2 0 2 0 0 0 
25) 0200200 
26) 0 2 0 0 0 2 0 
27) 0 2 0 0 0 0 2 
28) 0 0 2 2 0 0 0 
29) 0 0 2 0 2 0 0 
30) 0 0 2 0 0 2 0 
31) 0 0 2 0 0 0 2 
32) 0 0 0 2 2 0 0 
33) 0 0 0 2 0 2 0 
34) 0 0 0 2 0 0 2 
35) 0 0 0 0 2 2 0 
36) 0 0 0 0 2 0 2 
37) 0 0 0 0 0 2 2 
38) 0 2 2 2 2 2 2 
39) 2 0 2 2 2 2 2 
40) 2 2 0 2 2 2 2 
41)2220222 

42) 2 2 2 2 0 2 2 
43) 2 2 2 2 2 0 2 
44) 2222220 

Eight factors. 53% 
1)11111111 
2) 11111110 
3) 1 1 1 1 1 1 0 
4) 1 1 1 1 1 0 1 
5) 1 1 1 1 0 1 1 
6) 1 1 1 0 1 1 1 
7) 1 1 0 1 1 1 1 
8) 1 0 1 1 1 1 1 
9)0111111 
10) 1 1 1 1 1 1 1 
11) 1 1 1 1 1 12 
12) 1 1 1 1 1 2 1 
13) 1 1 1 1 2 1 1 
14) 1 1 1 2 1 1 1 
15) 1 1 2 1 1 1 1 
16) 1 2 1 1 1 1 1 
17) 2 1 1 1 1 1 1 
18) 00020002 
19) 00020020 
20) 00020200 
21) 00022000 
22) 00200002 
23)002 000 2 0 
24) 00200200 
25) 00202000 
26) 02000002 
27) 02000020 
28) 02000200 
29) 02002000 
30) 20000002 
31)20000020 
32) 20000200 
33) 20002000 
34) 00222222 
35) 02022222 
36) 02202222 
37) 20022222 
38) 20202222 
39) 22002222 
40) 02220000 
41)20220000 
42) 22020000 
43) 22200000 
44) 22220022 
45) 22220202 
46) 22220220 
47) 22222002 
48) 22222020 
49) 22222200 
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50) 00000000 
51) 00000222 
52) 00002220 
53) 0 0 0 1 2 0 2 2 
54) 0 0 0 1 2 2 0 2 

Nine factors. 46% 
1) 1  1  1 
2) 1  1  1 
3) 1  1   1 
4) 1   1  1 
5) 1  1   1 

6) 
7) 
8) 
9) 

10) 0 1 
11) 1 1 
12) 
13) 
14) 
15) 
16) 
17) 
18) 
19) 

1 1 1 
1 1 1 
1 1 0 
1 0 1 

1 
1 
1 
1 

1 1 
1 1 
1 1   1 
1 1   1 
1 1 
1 1 
1 2 
2 1 

20) 0 0 0 
21) 0 0 0 
22) 0 0 0 
23) 0 0 0 
24) 0 0 0 
25) 0 0 2 
26) 0 0 
27) 0 0 
28) 0 0 
29) 0 0 
30) 0 
31) 0 
32) 0 
33) 0 
34) 0 

2 
2 
2 
2 
2 

40) 0 0 2 
41) 0 2 0 
42) 0 

2 
2 
2 
2 
2 

35) 
36) 
37) 
38) 
39) 

0 0 
0 0 
0 0 
0 0 
0 0 

43) 
44) 
45) 
46) 
47) 

2 2 
0 0 
0 2 
2 0 
2 2 
2 2 

2 0 0 
2 0 0 
2 0 0 
2 0 2 
2 2 0 
0 0 0 
0 0 0 
0 0 0 
0 0 2 
0 2 0 
0 0 0 
0 0 0 
0 0 0 
0 0 2 
0 2 0 
0 0 0 
0 0 0 
0 0 0 
0 0 
0 2 
2  2 

2 
2 
2 
2 
2 

2 
0 
2 
2 
2 
2 
2 
2 

0 0 
0 2 

0 0 2 
0 2 0 
2 0 0 
0 0 0 
0 0 0 
0 0 2 
0 2 0 
2 0 0 
0 0 0 
0 0 0 
0 0 2 
0 2 0 
2 0 0 
0 0 0 
0 0 0 
0 0 2 
0 2 0 
2 0 0 
0 0 0 
0 0 0 

2 2 
2 
2 
2 
2 
2 
2 
2 

2 
2 
2 
2 
2 
2 
2 

48)  2 2 2 2 0 2 2 0 2 
49)  2 2 2 2 0 2 2 2 0 
50)  2 2 2 2 2 0 0 2 2 
51)  2 2 2 2 2 0 2 0 2 
52)  2 2 2 2 2 0 2 2 0 
53) 2 2 2 2 2 2 0 0 2 
54) 2 2 2 2 2 2 0 2 0 
55) 2 2 2 2 2 2 2 0 0 
56) 2 2 2 2 2 2 2 2 2 
57) 0 0 0 0 2 2 2 2 0 
58) 0 0 0 0 2 2 0 2 2 
59)  0 0 0 0 2 0 2 2 2 
60) 0 0 0 0 0 2 2 2 2 
61)  0 0 0 0 2 2 2 0 2 
62) 2 2 2 0 0 0 0 0 0 
63) 2 0 2 2 0 0 0 0 0 
64) 2 2 0 2 0 0 0 0 0 
65) 0 2 2 2 0 0 0 0 0 

Ten factors. 41 % 
1)  1  1 111111 
2)  1  1 111110 
3)  1  1 
4)  1   1 
5)   1   1 
6)  1   1 
7)   1   1 0  11111 
8)  1   1 0 
9)  1   1 0 

10)  1  0 
11) 0  1 
12)  1   1 
13)   1  1 
14)  1   1 
15)  1  1 
16)  1   1 
17)  1   1 
18)  1   1 
19)   1   1 
20)  1  2 
21)  2  1 
22)  0 0 0 0 0 0 0 0 0 0 
23) 0 0 0 0 2 0 0 0 0 2 
24) 0 0 0 0 2 0 0 0 2 0 
25) 0 0 0 0 2 0 0 2 0 0 
26)  0 0 0 0 2 0 2 0 0 0 
27) 0 0 0 0 2 2 0 0 0 0 
28)  0 0 0 2 0 0 0 0 0 2 
29) 0 0 0 2 0 0 0 0 2 0 
30)  0 0 0 2 0 0 0 2 0 0 
31) 0 0 0 2 0 0 2 0 0 0 
32)  0 0 0 2 0 2 0 0 0 0 
33) 0 0 2 0 0 0 0 0 0 2 
34)  0 0 2 0 0 0 0 0 2 0 
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35) 0 0 2 0 0 0 0 2 0 0 
36) 0 0 2 0 0 0 2 0 0 0 
37) 0 0 2 0 0 2 0 0 0 0 
38) 0 2 0 0 0 0 0 0 0 2 
39) 0 2 0 0 0 0 0 0 2 0 
40) 0 2 0 0 0 0 0 2 0 0 
41) 0 2 0 0 0 0 2 0 0 0 
42) 0 2 0 0 0 2 0 0 0 0 
43) 2 0 0 0 0 0 0 0 0 2 
44) 2 0 0 0 0 0 0 0 2 0 
45) 2 0 0 0 0 0 0 2 0 0 
46) 2 0 0 0 0 0 2 0 0 0 
47) 2 0 0 0 0 2 0 0 0 0 
48) 0 0 2 2 2 2 2 2 2 2 
49) 0 2 0 2 2 2 2 2 2 2 
50) 0 2 2 0 2 2 2 2 2 2 
51) 0 2 2 2 0 2 2 2 2 2 
52) 2 0 0 2 2 2 2 2 2 2 
53) 2 0 2 0 2 2 2 2 2 2 
54) 2 0 2 2 0 2 2 2 2 2 
55) 2 2 0 0 2 2 2 2 2 2 
56) 2 2 0 2 0 2 2 2 2 2 
57) 2 2 2 0 0 2 2 2 2 2 
58) 2 2 2 2 2 0 0 2 2 2 
59) 2 2 2 2 2 0 2 0 2 2 
60) 2 2 2 2 2 0 2 2 0 2 
61) 2 2 2 2 2 0 2 2 2 0 
62) 2 2 2 2 2 2 0 0 2 2 
63) 2 2 2 2 2 2 0 2 0 2 
64) 2 2 2 2 2 2 0 2 2 0 
65) 2 2 2 2 2 2 2 0 0 2 
66) 2 2 2 2 2 2 2 0 2 0 
67) 2 2 2 2 2 2 2 2 0 0 
68) 0 0 0 0 0 0 2 2 2 2 
69) 0 0 0 0 0 2 0 2 2 2 
70) 0 0 0 0 0 2 2 0 2 2 
71) 0 0 0 0 0 2 2 2 0 2 
72) 0 0 0 0 0 2 2 2 2 0 
73) 0 2 2 2 2 0 0 0 0 0 
74) 2 0 2 2 2 0 0 0 0 0 
75) 2 2 0 2 2 0 0 0 0 0 
76) 2 2 2 0 2 0 0 0 0 0 
77) 2 2 2 2 0 0 0 0 0 0 
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APPENDIX F - EXPERIMENT RESULTS 

This appendix gives details of the experiment involving the phone-line simulation discussed 
on page 36. The responses are average number of customers served in a day, maximum queue 
length, server utilization percentage, and average waiting time. Seven factors are varied in 
the experiment. 

ORIGINAL DESIGN AND OBSERVATIONS 
1 ) 1 1 1 1 1 1 1 146.18 
2 ) 0 1 1 1 1 1 1 145.19 
3 ) 2 1 1 1 1 1 1 146.53 
4 ) 1 0 1 1 1 1 1 146.80 
5 ) 1 2 1 1 1 1 1 145.60 
6 ) 1 1 0 1 1 1 1 146.16 
7 ) 1 1 2 1 1 1 1 145.95 
8 1 1 1 1 0 1 1 1 142.11 
9 1 1 1 1 2 1 1 1 146.89 

10 ) 1 1 1 1 0 1 1 146.61 
11 1 1 1 1 1 2 1 1 145.39 
12 I 1 1 1 1 1 0 1 142.99 
13 l 1 1 1 1 1 2 1 149.65 
14 l 1 1 1 1 1 1 0 153.60 
15 1 1 1 1 1 1 1 2 139.41 
16 1 0 0 0 0 0 0 0 148.37 
17 1 2 2 0 0 0 0 0 147.32 
18 ) 2 0 2 0 0 0 0 150.94 
19 >    0 2 2 0 0 0 0 142.81 
20 2 0 0 2 0 0 0 151.87 
21, 0 2 0 2 0 0 0 151.31 
22, 1 0 0 2 2 0 0 0 150.96 
23, 2 0 0 0 2 0 0 147.46 
24] 0 2 0 0 2 0 0 135.27 
25 0 0 2 0 2 0 0 141.76 
26; 0 0 0 2 2 0 0 151.01 
27; 2 0 0 0 0 2 0 157.46 
28 0 2 0 0 0 2 0 150.06 
29; 0 0 2 0 0 2 0 154.20 
3o; 0 0 0 2 0 2 0 158.12 
3i; 0 0 0 0 2 2 0 148.70 
32] 2 0 0 0 0 0 2 136.76 
33] 0 2 0 0 0 0 2 131.94 
34; 0 0 2 0 0 0 2 135.05 
35] 0 0 0 2 0 0 2 136.90 
36] 0 0 0 0 2 0 2 131.65 
37] 0 0 0 0 0 2 2 141.46 
38] 0 2 2 2 2 2 2 141.57 
39] 2 0 2 2 2 2 2 142.85 
40] 2 2 0 2 2 2 2 142.77 
41] 2 2 2 0 2 2 2 136.35 
42; 2 2 2 2 0 2 2 142.86 
43] 2 2 2 2 2 0 2 136.86 
44] 2 2 2 2 2 2 0 157.73 

5.34 55.21 
4.80 54.78 
5.58 55.37 
4.94 52.46 
5.67 57.14 
5.18 53.23 
6.35 57.26 
7.14 68.26 
3.97 45.57 
4.50 49.60 
6.01 60.65 
5.34 56.13 
5.34 »  54.46 
5.75 57.92 
4.72 52.69 
5.59 59.53 
7.71 66.64 
7.64 65.48 
6.35 69.42 
2.99 40.32 
3.29 43.32 
5.23 43.24 
9.15 73.03 
6.79 74.65 
6.73 75.70 
4.02 49.51 
6.85 58.86 
5.98 62.99 
6.05 61.85 
2.82 39.08 
6.50 68.52 
5.63 54.98 
5.38 59.77 
5.58 58.57 
2.23 36.34 
5.94 65.20 
4.85 52.98 
5.25 50.11 
5.73 46.89 
4.09 47.10 
8.90 75.91 
5.60 40.98 
6.09 52.32 
6.93 55.80 

1 .68 
1 .40 
1 .87 
1 .12 
2 .21 
1 .57 
2 .29 
4 .94 
.61 

1 .09 
2 .48 
1 .71 
1 .65 
1 .99 
1 .42 
2 .05 
5 .78 
3 .62 
4 .50 
.24 
.45 
.85 

6 85 
6 61 
5 19 

« 61 
2. 77 
3. 64 
2. 67 

* 20 
4. 16 
1. 91 
3. 06 
2. 24 

■ 12 
3. 45 
1. 47 
1. 36 
1. 09 

• 88 
9. 96 

• 98 
1. 64 
2. 13 
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PARAMETER ESTIMATES 
mean 144.8671 5.6006 55.9494 2.5133 

A 1.0669 .5848 .5123 .4581 

Asq -.1155 -.0425 -.0563 -.0250 

B -1.1394 .2493 2.2434 .6965 

Bsq -.0022 -.0042 -.1470 -.0152 

C -.1188 .6654 2.0335 .4311 

Csq -.0505 .1491 .0012 .0735 

D 2.5898 -1.3193 -11.0515 -2.2849 

Dsq -.5689 .0791 .5574 .3560 

E -1.3032 .5143 5.2345 .8880 

Esq -.0689 -.0209 -.0396 .0259 

F 3.1500 .0145 -.8183 .0312 

Fsq .0378 .0075 .0187 -.0094 

G -6.8271 -.3721 -2.5081 -.2271 

Gsq .0995 -.0275 .0211 -.0029 

AB .2850 .0980 .1884 .1842 

AC .1236 .0500 .0394 -.0311 

AD -.7741 -.3535 -.4016 -.4026 

AE .5005 .2412 .2943 .2820 

AF -.0169 .0116 -.0666 -.0320 

AG -.4883 -.1329 -.2288 -.1099 

BC .0945 -.0183 .1392 .0277 

BD 1.0893 -.0243 -.5379 -.5126 

BE -.5436 -.0945 -.1882 .0598 

BF .1365 .0484 .0794 .0253 

BG .3101 .0589 .0837 .0163 

CD -.0645 .4301 -.4135 -.0864 

CE .0125 -.1401 .2184 .0294 

CF .1051 .0353 -.0624 .1076 

CG .0213 .0783 -.0739 .1355 

DE 1.1948 -.0586 -.4821 -.6436 

DF -.0451 -.0132 .0944 -.0359 

DG -.6464 -.0002 .2173 .0799 

EF -.0230 -.0384 -.0307 -.0142 

EG .4181 -.0179 -.0512 -.0576 

FG -.1468 .0549 .0758 .1554 
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APPENDIX G - NETWORK MODEL RESULTS 

The technique of staged aggregation was proposed as a candidate for speeding up 
large-scale simulation models in which there are very many essentially identical elements, 
such as for simulating traffic flow in very large networks. Some work was done on a 
network model to attempt to develop the concept. This appendix summarizes the results, 
which were essentially all negative. The work was abandoned when it appeared that the 
technique was inappropriate for engineering simulations of interest to CECOM. 

The model developed is an idealized model that will be referred to as the rumor 
model. N2 nodes are connected in a two-dimensional Cartesian grid of side N. At some 
epoch an event occurs that causes one of the nodes to contact its four neighbors in a 
random order (presumably to tell them about the event). After each node is contacted, 
it contacts its neighbors, again in a random order, to pass along the message. The 
simulation of this system is constructed to loop through the nodes to see which have 
received the message but have not yet contacted all four neighbors, then effect one of 
these contacts. The response variables are 1) the number of iterations of the loop before 
all nodes have been notified, 2) the number of calls "wasted" in the sense that they are 
made to a node that has already received the message, and 3) the number of calls made 
out of the grid to phantom neighbors located outside the perimeter of the grid; separate 
counts are made in each of the four directions, so this represents four outputs. 

Rather than simulating the system by modeling each node, it could also be 
simulated by grouping nodes together and modeling the behavior of the group.  The 
behavior of the group is more complex, but there are fewer groups than there are nodes. 
If N = 16, then the system contains 256 nodes. If these are simulated in groups of 4 (a 2 
x 2 grid), then only 64 groups must be simulated. Alternatively, they could be simulated 
in groups of 16 as a 4 x 4 grid, and the behavior of the 4 x 4 grid could be determined 
by simulating 4 groups of 2 x 2 grids. 

The principle of staged aggregation works with a sequence of groupings of the 
individual elements as described here. If the complexity of the models for the groupings 
does not grow at too great a rate, and if the rules for combining the models do not 
increase in complexity, then there could be a net saving in simulation effort by doing the 
staged aggregation over simulating the elements individually. 

Several variants of this basic model were developed. The first set looked at 
aggregation of the model into blocks:  (1) a 16 x 16 array of nodes was compared with 
(2) an 8 x 8 array of blocks of 2 x 2 nodes; (3) a 4 x 4 array of blocks consisting of 2 x 2 
sub-blocks of 2 x 2 nodes; and (4) a 2 x 2 array of blocks consisting of 2 x 2 sub-blocks, 
which in turn consist of 2 x 2 sub-sub-blocks of 2 x 2 nodes.  Delays were introduced to 
represent the time taken in identifying which nodes will make and receive the calls, 
setting up the calls, and passing on the message. 

A second set looked at an alternate stopping rule: the run ended when the 
message was received at the opposite corner from which it started. In this case an 
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additional response is how many nodes actually received the message. 

A third set replaced the loop structure with an event calendar. When a message 
was received at a node, an event was scheduled at the next time step to make calls to 
pass on the message. An added feature was the use of a call list; if a call was made to a 
node that was already on the list for a given time step, then a busy signal was received 
and the call must be repeated later. This variant was combined with the four levels of 
aggregation into blocks. 

A refinement of the event structure was to add a feature wherein a node would 
act as a sink with a certain probability. An output statistic here was the number of nodes 
that received the message before it died because no active node would pass it on. 

Run times were recorded for these cases. The delay incorporated into the models 
has been adjusted so that the runs times for 100 Monte Carlo samples lie in the range 5 
to 10 minutes on a 486 processor running at 33 MHz. It has been found that the more 
complex indexing schemes of the aggregated models add only a few seconds time penalty. 

Results were largely negative; no ways of capitalizing on the variations in model 
structure were found. The sole exception is a variant of the 2-D loop model in which the 
results of the first stimulation of a block of 4 nodes has been precomputed and is 
supplied by a special subroutine. For this case a very modest time saving of only about 
10% is seen. 

A further variant considers a message started at the center of the grid. As a given 
node receives the message, it may serve as a sink by failing to pass the message along 
with a given probability structure. The parameters of the problem are set so that the 
message dies out before all the nodes of the complete grid receive the message. 

If, on the other hand, the message starts at a corner of the grid, say the lower left 
corner, then the pattern of message transmittal will be similar to a quarter of the pattern 
if the message starts in the center. It will not be the same, however, because messages 
may be sent outside the boundaries of the grid to the left and down, but are not received 
from those directions. The technique studied attempts to rectify the quarter-plane model 
by the addition of a new event type that introduces messages received along the borders. 
These represent messages that in the full plane would have been propagated by going 
into an adjacent quadrant then being passed back.  Initially there is no information on 
which to build a model for such reintroduction. The idea used is to estimate the 
probability of the occurrence of a reintroduction event from the model with no 
reintroduction, then iteratively correct the probabilities until stability is achieved. The 
details will now be described as implemented in a test example. 

Let the full grid be of size 31x31 nodes. Let the nodes be numbered (x,y), 
where x and y can have the integer values  -15 to  +15. The starting point for the 
initial message is (0,0). This simulation model is replicated 100 times. This will be 
considered the reference case. 
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The reference case is to be compared with a modified simulation of a 16 x 16 
grid, with nodes numbered with the integer values 0 to  +15. The starting point is 
again (0,0). The objective is to see if the reference case can be duplicated approxi- 
mately by a scaled version of the smaller modified case. Consider a node (i,0) on the 
lower border of the array in the smaller case. This node will send messages out of the 
array to node (i,-l), but cannot receive messages from that node because it is not 
modeled in the simulation. The model is instrumented by recording the number of 
occurrences in which a node  (i,l)  sends a message to node  (i,0), and the simulation 
time of each occurrence. This number of occurrences in 100 samples is used to estimate 
the probability that a message should have been received by node  (i,0)  from the missing 
node (i,-l). 

The next step is to modify the model to have messages introduced by the 
bordering nodes. The probability that a node (i,0) will receive such a message is a new 
input, as is a linear expression for the simulation time at which the input would occur. 
By the symmetry of the problem, the same expressions are used for introducing messages 
from (-l,j) to (0,j). The revised simulation is run to obtain improved estimates of 
these probabilities and the expression for simulation time of occurrence.  It was found 
that the second estimates differed slightly from the initial ones, but that further iterations 
were stable. That is, the third run, using the second estimate of probabilities and time of 
occurrence, gives a revised estimate that does not differ significantly from the second 
estimate. 

The models were rigged with artificial time delays representing computation that 
would occur in a real model of a communication system. The time taken by the 
reference case was 1423.0 seconds on the 486 PC. The time taken by one run of the 
smaller case was 406.3 seconds. Depending on assumptions made about the effort 
required to establish the parameters for the smaller model, there may or may not be a 
time saving. 
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